{"title":"将日光照明与工作环境照明相结合,提高办公空间的节能效果","authors":"Simeon Nyambaka Ingabo, P. Chaiwiwatworakul","doi":"10.11113/jest.v4n2.93","DOIUrl":null,"url":null,"abstract":"Daylighting has been widely studied as a fundamental aspect of spatial illumination and energy efficient façade design. Effective installation and control of shading devices diminishes the adverse effects of prevailing climatic conditions on building envelope performance and reduces resultant lighting and cooling energy consumption. Task-ambient lighting as a free-standing approach has also been proven to reduce lighting energy consumption compared with typical general ambient lighting. This study estimates the energy saving potential of integrating daylighting through fixed external horizontal shading slats with task lighting. Spot measurements were taken in a test room to validate a daylight calculation program. Full year indoor work plane daylight simulations were performed for office spaces of different floor areas and varying window to wall ratios. Indoor daylight quality was assessed using the Useful Daylight Illuminance metric and three different task lighting schemes explored. Lighting energy savings of 10% to 90% were estimated under the three schemes in comparison to similar office spaces with common unshaded heat reflective glazing.","PeriodicalId":15706,"journal":{"name":"Journal of Energy and Safety Technology (JEST)","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Daylighting with Task-Ambient Lighting for Enhanced Energy Savings in Office Spaces\",\"authors\":\"Simeon Nyambaka Ingabo, P. Chaiwiwatworakul\",\"doi\":\"10.11113/jest.v4n2.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Daylighting has been widely studied as a fundamental aspect of spatial illumination and energy efficient façade design. Effective installation and control of shading devices diminishes the adverse effects of prevailing climatic conditions on building envelope performance and reduces resultant lighting and cooling energy consumption. Task-ambient lighting as a free-standing approach has also been proven to reduce lighting energy consumption compared with typical general ambient lighting. This study estimates the energy saving potential of integrating daylighting through fixed external horizontal shading slats with task lighting. Spot measurements were taken in a test room to validate a daylight calculation program. Full year indoor work plane daylight simulations were performed for office spaces of different floor areas and varying window to wall ratios. Indoor daylight quality was assessed using the Useful Daylight Illuminance metric and three different task lighting schemes explored. Lighting energy savings of 10% to 90% were estimated under the three schemes in comparison to similar office spaces with common unshaded heat reflective glazing.\",\"PeriodicalId\":15706,\"journal\":{\"name\":\"Journal of Energy and Safety Technology (JEST)\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy and Safety Technology (JEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/jest.v4n2.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy and Safety Technology (JEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/jest.v4n2.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating Daylighting with Task-Ambient Lighting for Enhanced Energy Savings in Office Spaces
Daylighting has been widely studied as a fundamental aspect of spatial illumination and energy efficient façade design. Effective installation and control of shading devices diminishes the adverse effects of prevailing climatic conditions on building envelope performance and reduces resultant lighting and cooling energy consumption. Task-ambient lighting as a free-standing approach has also been proven to reduce lighting energy consumption compared with typical general ambient lighting. This study estimates the energy saving potential of integrating daylighting through fixed external horizontal shading slats with task lighting. Spot measurements were taken in a test room to validate a daylight calculation program. Full year indoor work plane daylight simulations were performed for office spaces of different floor areas and varying window to wall ratios. Indoor daylight quality was assessed using the Useful Daylight Illuminance metric and three different task lighting schemes explored. Lighting energy savings of 10% to 90% were estimated under the three schemes in comparison to similar office spaces with common unshaded heat reflective glazing.