一些具有独立元素的模式矩阵

Pub Date : 2020-11-27 DOI:10.1142/S2010326321500301
A. Bose, Koushik Saha, Priyanka Sen
{"title":"一些具有独立元素的模式矩阵","authors":"A. Bose, Koushik Saha, Priyanka Sen","doi":"10.1142/S2010326321500301","DOIUrl":null,"url":null,"abstract":"Patterned random matrices such as the reverse circulant, the symmetric circulant, the Toeplitz and the Hankel matrices and their almost sure limiting spectral distribution (LSD), have attracted much attention. Under the assumption that the entries are taken from an i.i.d. sequence with finite variance, the LSD are tied together by a common thread — the [Formula: see text]th moment of the limit equals a weighted sum over different types of pair-partitions of the set [Formula: see text] and are universal. Some results are also known for the sparse case. In this paper, we generalize these results by relaxing significantly the i.i.d. assumption. For our models, the limits are defined via a larger class of partitions and are also not universal. Several existing and new results for patterned matrices, their band and sparse versions, as well as for matrices with continuous and discrete variance profile follow as special cases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Some patterned matrices with independent entries\",\"authors\":\"A. Bose, Koushik Saha, Priyanka Sen\",\"doi\":\"10.1142/S2010326321500301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patterned random matrices such as the reverse circulant, the symmetric circulant, the Toeplitz and the Hankel matrices and their almost sure limiting spectral distribution (LSD), have attracted much attention. Under the assumption that the entries are taken from an i.i.d. sequence with finite variance, the LSD are tied together by a common thread — the [Formula: see text]th moment of the limit equals a weighted sum over different types of pair-partitions of the set [Formula: see text] and are universal. Some results are also known for the sparse case. In this paper, we generalize these results by relaxing significantly the i.i.d. assumption. For our models, the limits are defined via a larger class of partitions and are also not universal. Several existing and new results for patterned matrices, their band and sparse versions, as well as for matrices with continuous and discrete variance profile follow as special cases.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326321500301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326321500301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

逆循环矩阵、对称循环矩阵、Toeplitz矩阵和Hankel矩阵等随机矩阵及其几乎确定的极限谱分布(LSD)引起了人们的广泛关注。在假设条目取自方差有限的i.i.d序列的情况下,LSD被一条共同的线联系在一起——极限的第h矩等于集合中不同类型的对分区的加权和[公式:见文本],并且是全域的。有些结果对于稀疏情况也是已知的。在本文中,我们通过显著放宽i.i.d假设来推广这些结果。对于我们的模型,限制是通过更大的分区类来定义的,并且也不是通用的。作为特例,本文给出了关于模式矩阵及其带状和稀疏形式,以及具有连续和离散方差轮廓的矩阵的一些现有的和新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some patterned matrices with independent entries
Patterned random matrices such as the reverse circulant, the symmetric circulant, the Toeplitz and the Hankel matrices and their almost sure limiting spectral distribution (LSD), have attracted much attention. Under the assumption that the entries are taken from an i.i.d. sequence with finite variance, the LSD are tied together by a common thread — the [Formula: see text]th moment of the limit equals a weighted sum over different types of pair-partitions of the set [Formula: see text] and are universal. Some results are also known for the sparse case. In this paper, we generalize these results by relaxing significantly the i.i.d. assumption. For our models, the limits are defined via a larger class of partitions and are also not universal. Several existing and new results for patterned matrices, their band and sparse versions, as well as for matrices with continuous and discrete variance profile follow as special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信