通过2赋范空间中序列的广义Nörlund均值的Tauberian定理

IF 0.3 Q4 MATHEMATICS
Valdete Loku
{"title":"通过2赋范空间中序列的广义Nörlund均值的Tauberian定理","authors":"Valdete Loku","doi":"10.33039/ami.2022.07.001","DOIUrl":null,"url":null,"abstract":". In this paper, we will show Tauberian conditions under which ordinary convergence of the sequence ( 𝑥 𝑛 ) in 2-normed space 𝑋 , follows from 𝑇 𝑝,𝑞𝑛 -summability. In fact we give a necessary and sufficient Tauberian condition for this method of summability. Also, we prove that Tauberian Theorems for these summability methods are valid with Schmidt-type slowly oscillating condition as well as with Hardy-type “big O” condition.","PeriodicalId":43454,"journal":{"name":"Annales Mathematicae et Informaticae","volume":"391 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tauberian theorems via the generalized Nörlund mean for sequences in 2-normed spaces\",\"authors\":\"Valdete Loku\",\"doi\":\"10.33039/ami.2022.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we will show Tauberian conditions under which ordinary convergence of the sequence ( 𝑥 𝑛 ) in 2-normed space 𝑋 , follows from 𝑇 𝑝,𝑞𝑛 -summability. In fact we give a necessary and sufficient Tauberian condition for this method of summability. Also, we prove that Tauberian Theorems for these summability methods are valid with Schmidt-type slowly oscillating condition as well as with Hardy-type “big O” condition.\",\"PeriodicalId\":43454,\"journal\":{\"name\":\"Annales Mathematicae et Informaticae\",\"volume\":\"391 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae et Informaticae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33039/ami.2022.07.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae et Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/ami.2022.07.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 在本文中,我们将证明在2赋范空间𝑋中序列(≥𝑛)的常收敛性的Tauberian条件,该条件由𝑇𝑝,𝑞𝑛-可和性推导而来。事实上,我们给出了这种可和性方法的一个充分必要条件。并证明了这些可和性方法的Tauberian定理在schmidt型慢振荡条件和hardy型“大O”条件下成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tauberian theorems via the generalized Nörlund mean for sequences in 2-normed spaces
. In this paper, we will show Tauberian conditions under which ordinary convergence of the sequence ( 𝑥 𝑛 ) in 2-normed space 𝑋 , follows from 𝑇 𝑝,𝑞𝑛 -summability. In fact we give a necessary and sufficient Tauberian condition for this method of summability. Also, we prove that Tauberian Theorems for these summability methods are valid with Schmidt-type slowly oscillating condition as well as with Hardy-type “big O” condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信