{"title":"来自阿贝尔群行为的量子货币","authors":"Mark Zhandry","doi":"10.48550/arXiv.2307.12120","DOIUrl":null,"url":null,"abstract":"We give a construction of public key quantum money, and even a strengthened version called quantum lightning, from abelian group actions, which can in turn be constructed from suitable isogenies over elliptic curves. We prove security in the generic group model for group actions under a plausible computational assumption, and develop a general toolkit for proving quantum security in this model. Along the way, we explore knowledge assumptions and algebraic group actions in the quantum setting, finding significant limitations of these assumptions/models compared to generic group actions.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"6 1","pages":"1097"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Money from Abelian Group Actions\",\"authors\":\"Mark Zhandry\",\"doi\":\"10.48550/arXiv.2307.12120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a construction of public key quantum money, and even a strengthened version called quantum lightning, from abelian group actions, which can in turn be constructed from suitable isogenies over elliptic curves. We prove security in the generic group model for group actions under a plausible computational assumption, and develop a general toolkit for proving quantum security in this model. Along the way, we explore knowledge assumptions and algebraic group actions in the quantum setting, finding significant limitations of these assumptions/models compared to generic group actions.\",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"6 1\",\"pages\":\"1097\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.12120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.12120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We give a construction of public key quantum money, and even a strengthened version called quantum lightning, from abelian group actions, which can in turn be constructed from suitable isogenies over elliptic curves. We prove security in the generic group model for group actions under a plausible computational assumption, and develop a general toolkit for proving quantum security in this model. Along the way, we explore knowledge assumptions and algebraic group actions in the quantum setting, finding significant limitations of these assumptions/models compared to generic group actions.