{"title":"汽车等离子体点火系统的实时阻抗测量与频率控制","authors":"Roger Williams, Y. Ikeda","doi":"10.1109/MWSYM.2015.7167027","DOIUrl":null,"url":null,"abstract":"We describe a method for optimizing plasma matching in a pulsed 2.45 GHz automotive plasma ignition system. The large-signal impedance into the spark plug feed network is continuously monitored, and the frequency for optimal match is estimated and changed in less than 100 μs to accomodate changes in gas pressure. This method is also used to “learn” the frequency response of the system to compensate for initial manufacturing variations, ageing, and temperature-related changes in the feed network and spark plug. We describe the performance of a system using a modified coaxial transmission line resonator (CTLR) spark plug operating at pressures from 0.1 to 1 MPa, and discuss a low-cost implementation.","PeriodicalId":6493,"journal":{"name":"2015 IEEE MTT-S International Microwave Symposium","volume":"38 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-time impedance measurement and frequency control in an automotive plasma ignition system\",\"authors\":\"Roger Williams, Y. Ikeda\",\"doi\":\"10.1109/MWSYM.2015.7167027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a method for optimizing plasma matching in a pulsed 2.45 GHz automotive plasma ignition system. The large-signal impedance into the spark plug feed network is continuously monitored, and the frequency for optimal match is estimated and changed in less than 100 μs to accomodate changes in gas pressure. This method is also used to “learn” the frequency response of the system to compensate for initial manufacturing variations, ageing, and temperature-related changes in the feed network and spark plug. We describe the performance of a system using a modified coaxial transmission line resonator (CTLR) spark plug operating at pressures from 0.1 to 1 MPa, and discuss a low-cost implementation.\",\"PeriodicalId\":6493,\"journal\":{\"name\":\"2015 IEEE MTT-S International Microwave Symposium\",\"volume\":\"38 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE MTT-S International Microwave Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2015.7167027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2015.7167027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time impedance measurement and frequency control in an automotive plasma ignition system
We describe a method for optimizing plasma matching in a pulsed 2.45 GHz automotive plasma ignition system. The large-signal impedance into the spark plug feed network is continuously monitored, and the frequency for optimal match is estimated and changed in less than 100 μs to accomodate changes in gas pressure. This method is also used to “learn” the frequency response of the system to compensate for initial manufacturing variations, ageing, and temperature-related changes in the feed network and spark plug. We describe the performance of a system using a modified coaxial transmission line resonator (CTLR) spark plug operating at pressures from 0.1 to 1 MPa, and discuss a low-cost implementation.