极限定理的最新进展

B. Arras, J. Breton, Aurelia Deshayes, O. Durieu, R. Lachièze-Rey
{"title":"极限定理的最新进展","authors":"B. Arras, J. Breton, Aurelia Deshayes, O. Durieu, R. Lachièze-Rey","doi":"10.1051/proc/202068005","DOIUrl":null,"url":null,"abstract":"We present some recent developments for limit theorems in probability theory, illustrating the variety of this field of activity. The recent results we discuss range from Stein’s method, as well as for infinitely divisible distributions as applications of this method in stochastic geometry, to asymptotics for some discrete models. They deal with rates of convergence, functional convergences for correlated random walks and shape theorems for growth models.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"6 1","pages":"73-96"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Some recent advances for limit theorems\",\"authors\":\"B. Arras, J. Breton, Aurelia Deshayes, O. Durieu, R. Lachièze-Rey\",\"doi\":\"10.1051/proc/202068005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present some recent developments for limit theorems in probability theory, illustrating the variety of this field of activity. The recent results we discuss range from Stein’s method, as well as for infinitely divisible distributions as applications of this method in stochastic geometry, to asymptotics for some discrete models. They deal with rates of convergence, functional convergences for correlated random walks and shape theorems for growth models.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"6 1\",\"pages\":\"73-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/proc/202068005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202068005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出概率论中极限定理的一些最新进展,说明这一活动领域的多样性。最近我们讨论的结果范围从Stein的方法,以及作为该方法在随机几何中的应用的无限可分分布,到一些离散模型的渐近性。他们处理收敛速率,相关随机漫步的功能收敛和增长模型的形状定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some recent advances for limit theorems
We present some recent developments for limit theorems in probability theory, illustrating the variety of this field of activity. The recent results we discuss range from Stein’s method, as well as for infinitely divisible distributions as applications of this method in stochastic geometry, to asymptotics for some discrete models. They deal with rates of convergence, functional convergences for correlated random walks and shape theorems for growth models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信