{"title":"Klein-Beltrami模型。第四部分","authors":"Roland Coghetto","doi":"10.2478/forma-2020-0002","DOIUrl":null,"url":null,"abstract":"Summary Timothy Makarios (with Isabelle/HOL1) and John Harrison (with HOL-Light2) shown that “the Klein-Beltrami model of the hyperbolic plane satisfy all of Tarski’s axioms except his Euclidean axiom” [2],[3],[4, 5]. With the Mizar system [1] we use some ideas taken from Tim Makarios’s MSc thesis [10] to formalize some definitions and lemmas necessary for the verification of the independence of the parallel postulate. In this article, which is the continuation of [8], we prove that our constructed model satisfies the axioms of segment construction, the axiom of betweenness identity, and the axiom of Pasch due to Tarski, as formalized in [11] and related Mizar articles.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Klein-Beltrami model. Part IV\",\"authors\":\"Roland Coghetto\",\"doi\":\"10.2478/forma-2020-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Timothy Makarios (with Isabelle/HOL1) and John Harrison (with HOL-Light2) shown that “the Klein-Beltrami model of the hyperbolic plane satisfy all of Tarski’s axioms except his Euclidean axiom” [2],[3],[4, 5]. With the Mizar system [1] we use some ideas taken from Tim Makarios’s MSc thesis [10] to formalize some definitions and lemmas necessary for the verification of the independence of the parallel postulate. In this article, which is the continuation of [8], we prove that our constructed model satisfies the axioms of segment construction, the axiom of betweenness identity, and the axiom of Pasch due to Tarski, as formalized in [11] and related Mizar articles.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2020-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Timothy Makarios (with Isabelle/HOL1)和John Harrison (with HOL-Light2)证明了“双曲平面的Klein-Beltrami模型满足Tarski的所有公理,除了他的欧几里得公理”[2],[3],[4,5]。对于Mizar系统[1],我们使用了Tim Makarios的硕士论文[10]中的一些思想来形式化验证平行公设独立性所需的一些定义和引理。在本文中,作为[8]的延续,我们证明了我们构造的模型满足[11]和相关Mizar文章中形式化的分段构造公理、中间恒等式公理和Pasch due to Tarski公理。
Summary Timothy Makarios (with Isabelle/HOL1) and John Harrison (with HOL-Light2) shown that “the Klein-Beltrami model of the hyperbolic plane satisfy all of Tarski’s axioms except his Euclidean axiom” [2],[3],[4, 5]. With the Mizar system [1] we use some ideas taken from Tim Makarios’s MSc thesis [10] to formalize some definitions and lemmas necessary for the verification of the independence of the parallel postulate. In this article, which is the continuation of [8], we prove that our constructed model satisfies the axioms of segment construction, the axiom of betweenness identity, and the axiom of Pasch due to Tarski, as formalized in [11] and related Mizar articles.
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.