{"title":"医学数据集上反向传播与K-means性能比较","authors":"Asraa Abaullah Hussen","doi":"10.29196/JUB.V26I3.549","DOIUrl":null,"url":null,"abstract":"في العقود الأخيرة, وحتى يومنا هذا تكنولوجيا الحاسوب استخدمت في تطبيقات ومجالات مختلفة ومن ضمنها المجال الطبي, الذي دفع العديد من الباحثين إلى توظيف هذه التقنية ببناء أنظمة دعم القرار من خلال تطبيق العديد من الخوارزميات والطرق لهذا الغرض. في هذا البحث الشبكات ألعصبيه وK-means أقترحت لتصنيف القواعد الطبية ومن ثم مقارنة أداء هذه الطرق, التجارب العملية أظهرت الشبكات العصبية تمتلك أداء أفضل من k-means .","PeriodicalId":17505,"journal":{"name":"Journal of University of Babylon","volume":"6 1","pages":"6-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of Performance Between Back Propagation and K-means on Medical Datasets\",\"authors\":\"Asraa Abaullah Hussen\",\"doi\":\"10.29196/JUB.V26I3.549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"في العقود الأخيرة, وحتى يومنا هذا تكنولوجيا الحاسوب استخدمت في تطبيقات ومجالات مختلفة ومن ضمنها المجال الطبي, الذي دفع العديد من الباحثين إلى توظيف هذه التقنية ببناء أنظمة دعم القرار من خلال تطبيق العديد من الخوارزميات والطرق لهذا الغرض. في هذا البحث الشبكات ألعصبيه وK-means أقترحت لتصنيف القواعد الطبية ومن ثم مقارنة أداء هذه الطرق, التجارب العملية أظهرت الشبكات العصبية تمتلك أداء أفضل من k-means .\",\"PeriodicalId\":17505,\"journal\":{\"name\":\"Journal of University of Babylon\",\"volume\":\"6 1\",\"pages\":\"6-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of University of Babylon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29196/JUB.V26I3.549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Babylon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29196/JUB.V26I3.549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Performance Between Back Propagation and K-means on Medical Datasets
في العقود الأخيرة, وحتى يومنا هذا تكنولوجيا الحاسوب استخدمت في تطبيقات ومجالات مختلفة ومن ضمنها المجال الطبي, الذي دفع العديد من الباحثين إلى توظيف هذه التقنية ببناء أنظمة دعم القرار من خلال تطبيق العديد من الخوارزميات والطرق لهذا الغرض. في هذا البحث الشبكات ألعصبيه وK-means أقترحت لتصنيف القواعد الطبية ومن ثم مقارنة أداء هذه الطرق, التجارب العملية أظهرت الشبكات العصبية تمتلك أداء أفضل من k-means .