一种新型双层永磁转子磁通可调永磁涡流耦合器分析。

M. Tian, X. Wang, W. Zhao, Y. Yang, J. Diao, X. Ma
{"title":"一种新型双层永磁转子磁通可调永磁涡流耦合器分析。","authors":"M. Tian, X. Wang, W. Zhao, Y. Yang, J. Diao, X. Ma","doi":"10.1109/INTMAG.2018.8508584","DOIUrl":null,"url":null,"abstract":"Permanent magnet coupler (PMC) acts as a magnetic transmission device, the motivation and torque are transmitted through the interaction between the conductor rotor (CR) and permanent magnet rotor (PMR), the mechanical contact between the motor and load is eliminated. And for the effective suppression of the vibration, high reliability and efficient operation, it has been applied in electric power, petrochemical industry, pumps, blowers, water treatment and other fields [1]–[3]. Many structures of the PMCs had been designed, considering the rotational couplers, configurations as radial and axial magnetic flux represent two possible solutions [4]. For the typical axial flux coupler (i.e., disk type) and radial flux coupler (i.e., cylindrical type), the produced torque was controlled by adjusting the length of air gap or the coupling area between the CR and PMR [5]. However, the magnetic field utilization is lower for disk type, and additional mechanical devices are also needed to adjust the axial relative position between the CR and PMR for both types, the reliability is reduced and the space volume is increased. In [6], a flux adjustable PMC with a movable stator ring, whose slip speed can be adjusted by shifting the movable stator ring along the axial direction, was proposed, and the complicated mechanical devices can be avoided. In this paper, a novel flux adjustable PMC with a double-layer PMR is presented. The magnetic flux is adjusted by circumferentially controlling the relative position of the PMR’s two layers, the axial movement is replaced.","PeriodicalId":6571,"journal":{"name":"2018 IEEE International Magnetic Conference (INTERMAG)","volume":"19 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis on a Novel Flux Adjustable Permanent Magnet Eddy Current Coupler with a Double-layer Permanent Magnet Rotor.\",\"authors\":\"M. Tian, X. Wang, W. Zhao, Y. Yang, J. Diao, X. Ma\",\"doi\":\"10.1109/INTMAG.2018.8508584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permanent magnet coupler (PMC) acts as a magnetic transmission device, the motivation and torque are transmitted through the interaction between the conductor rotor (CR) and permanent magnet rotor (PMR), the mechanical contact between the motor and load is eliminated. And for the effective suppression of the vibration, high reliability and efficient operation, it has been applied in electric power, petrochemical industry, pumps, blowers, water treatment and other fields [1]–[3]. Many structures of the PMCs had been designed, considering the rotational couplers, configurations as radial and axial magnetic flux represent two possible solutions [4]. For the typical axial flux coupler (i.e., disk type) and radial flux coupler (i.e., cylindrical type), the produced torque was controlled by adjusting the length of air gap or the coupling area between the CR and PMR [5]. However, the magnetic field utilization is lower for disk type, and additional mechanical devices are also needed to adjust the axial relative position between the CR and PMR for both types, the reliability is reduced and the space volume is increased. In [6], a flux adjustable PMC with a movable stator ring, whose slip speed can be adjusted by shifting the movable stator ring along the axial direction, was proposed, and the complicated mechanical devices can be avoided. In this paper, a novel flux adjustable PMC with a double-layer PMR is presented. The magnetic flux is adjusted by circumferentially controlling the relative position of the PMR’s two layers, the axial movement is replaced.\",\"PeriodicalId\":6571,\"journal\":{\"name\":\"2018 IEEE International Magnetic Conference (INTERMAG)\",\"volume\":\"19 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Magnetic Conference (INTERMAG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTMAG.2018.8508584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Magnetic Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTMAG.2018.8508584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

永磁耦合器(PMC)作为一种磁性传动装置,通过导体转子(CR)和永磁转子(PMR)之间的相互作用传递电动机的动力和转矩,消除了电动机与负载之间的机械接触。并因其对振动的有效抑制、高可靠性和高效率运行,已在电力、石油化工、水泵、鼓风机、水处理等领域得到应用[1]-[3]。已经设计了许多pmc的结构,考虑到旋转耦合器,径向和轴向磁通配置代表了两种可能的解决方案[4]。对于典型的轴向磁链耦合器(即盘式)和径向磁链耦合器(即圆柱形),通过调节气隙长度或CR与PMR之间的耦合面积来控制产生的转矩[5]。但圆盘型的磁场利用率较低,且两种类型都需要额外的机械装置来调节CR和PMR之间的轴向相对位置,降低了可靠性,增加了空间体积。[6]提出了一种带活动定子环的磁链可调PMC,通过沿轴向移动活动定子环来调节其滑移速度,避免了复杂的机械装置。本文提出了一种新型的磁链可调PMC,它具有双层磁链。通过向周控制两层磁流变体的相对位置来调节磁通,代替轴向运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis on a Novel Flux Adjustable Permanent Magnet Eddy Current Coupler with a Double-layer Permanent Magnet Rotor.
Permanent magnet coupler (PMC) acts as a magnetic transmission device, the motivation and torque are transmitted through the interaction between the conductor rotor (CR) and permanent magnet rotor (PMR), the mechanical contact between the motor and load is eliminated. And for the effective suppression of the vibration, high reliability and efficient operation, it has been applied in electric power, petrochemical industry, pumps, blowers, water treatment and other fields [1]–[3]. Many structures of the PMCs had been designed, considering the rotational couplers, configurations as radial and axial magnetic flux represent two possible solutions [4]. For the typical axial flux coupler (i.e., disk type) and radial flux coupler (i.e., cylindrical type), the produced torque was controlled by adjusting the length of air gap or the coupling area between the CR and PMR [5]. However, the magnetic field utilization is lower for disk type, and additional mechanical devices are also needed to adjust the axial relative position between the CR and PMR for both types, the reliability is reduced and the space volume is increased. In [6], a flux adjustable PMC with a movable stator ring, whose slip speed can be adjusted by shifting the movable stator ring along the axial direction, was proposed, and the complicated mechanical devices can be avoided. In this paper, a novel flux adjustable PMC with a double-layer PMR is presented. The magnetic flux is adjusted by circumferentially controlling the relative position of the PMR’s two layers, the axial movement is replaced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信