{"title":"关于闵可夫斯基连分数的注记","authors":"H. Jager","doi":"10.1515/udt-2017-0019","DOIUrl":null,"url":null,"abstract":"Abstract Denote by Θ1,Θ2, · · · the sequence of approximation coefficients of Minkowski’s diagonal continued fraction expansion of a real irrational number x. For almost all x this is a uniformly distributed sequence in the interval [0, 1/2 ]. The average distance between two consecutive terms of this sequence and their correlation coefficient are explicitly calculated and it is shown why these two values are close to 1/6 and 0, respectively, the corresponding values for a random sequence in [0, 1/2].","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"6 1","pages":"125 - 130"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on the Continued Fraction of Minkowski\",\"authors\":\"H. Jager\",\"doi\":\"10.1515/udt-2017-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Denote by Θ1,Θ2, · · · the sequence of approximation coefficients of Minkowski’s diagonal continued fraction expansion of a real irrational number x. For almost all x this is a uniformly distributed sequence in the interval [0, 1/2 ]. The average distance between two consecutive terms of this sequence and their correlation coefficient are explicitly calculated and it is shown why these two values are close to 1/6 and 0, respectively, the corresponding values for a random sequence in [0, 1/2].\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"6 1\",\"pages\":\"125 - 130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/udt-2017-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/udt-2017-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract Denote by Θ1,Θ2, · · · the sequence of approximation coefficients of Minkowski’s diagonal continued fraction expansion of a real irrational number x. For almost all x this is a uniformly distributed sequence in the interval [0, 1/2 ]. The average distance between two consecutive terms of this sequence and their correlation coefficient are explicitly calculated and it is shown why these two values are close to 1/6 and 0, respectively, the corresponding values for a random sequence in [0, 1/2].