一些边加权图的Cohen-macaulayness

Diem Ly Thi Kieu, Nguyen Nguyen Phung
{"title":"一些边加权图的Cohen-macaulayness","authors":"Diem Ly Thi Kieu, Nguyen Nguyen Phung","doi":"10.18173/2354-1059.2022-0037","DOIUrl":null,"url":null,"abstract":"In this paper, we will study the characterization of Cohen-Macaulayness of some edge-weighted graphs. For cycle and tree edge-weighted graph, we will reprove the characterization of Cohen-Macaulayness of an edge-weighted cycle and an edge-weighted tree due to C.Paulsen and Wagstaff (2013) [1]. Our proof used a criterion of Hochster for Cohen-Macaulayness of a monomial ideal [2].","PeriodicalId":17007,"journal":{"name":"Journal of Science Natural Science","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COHEN-MACAULAYNESS OF SOME EDGE-WEIGHTED GRAPHS\",\"authors\":\"Diem Ly Thi Kieu, Nguyen Nguyen Phung\",\"doi\":\"10.18173/2354-1059.2022-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will study the characterization of Cohen-Macaulayness of some edge-weighted graphs. For cycle and tree edge-weighted graph, we will reprove the characterization of Cohen-Macaulayness of an edge-weighted cycle and an edge-weighted tree due to C.Paulsen and Wagstaff (2013) [1]. Our proof used a criterion of Hochster for Cohen-Macaulayness of a monomial ideal [2].\",\"PeriodicalId\":17007,\"journal\":{\"name\":\"Journal of Science Natural Science\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18173/2354-1059.2022-0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18173/2354-1059.2022-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将研究一些边加权图的Cohen-Macaulayness性质。对于环和树边权图,我们将引用C.Paulsen和Wagstaff(2013)[1]对边权环和边权树的Cohen-Macaulayness的表征进行修正。我们的证明使用了单项理想bb0的Cohen-Macaulayness的Hochster判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COHEN-MACAULAYNESS OF SOME EDGE-WEIGHTED GRAPHS
In this paper, we will study the characterization of Cohen-Macaulayness of some edge-weighted graphs. For cycle and tree edge-weighted graph, we will reprove the characterization of Cohen-Macaulayness of an edge-weighted cycle and an edge-weighted tree due to C.Paulsen and Wagstaff (2013) [1]. Our proof used a criterion of Hochster for Cohen-Macaulayness of a monomial ideal [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信