煤与生物质共烧对电厂碳捕集经济性的影响

Zhuang Quan, P. Geddis, B. Clements
{"title":"煤与生物质共烧对电厂碳捕集经济性的影响","authors":"Zhuang Quan, P. Geddis, B. Clements","doi":"10.32732/ase.2020.12.2.67","DOIUrl":null,"url":null,"abstract":"A detailed economic evaluation was carried out to determine the impact of biomass and coal co-firing on power plant carbon capture by methods of plants equipment designing factors and performance, and the sum up of the associated breakdowns of CAPEX and OPEX. Based on the assumptions of the CO2 neutrality of biomass and likely governmental incentives to reduce CO2 emissions, the study results show that biomass and coal co-firing would result in both lower cost of carbon avoided (carbon capture) and lower incremental cost of electricity generation when MEA solvent carbon capture is applied. Two scenarios for co-firing with carbon capture, 30% biomass blending and 90% or 60% CO2 capture from stack, indicate different preference depending on lower or higher incentives.","PeriodicalId":7336,"journal":{"name":"Advances in Material Sciences and Engineering","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Coal and Biomass Co-Firing on the Economy of Power Plant Carbon Capture\",\"authors\":\"Zhuang Quan, P. Geddis, B. Clements\",\"doi\":\"10.32732/ase.2020.12.2.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A detailed economic evaluation was carried out to determine the impact of biomass and coal co-firing on power plant carbon capture by methods of plants equipment designing factors and performance, and the sum up of the associated breakdowns of CAPEX and OPEX. Based on the assumptions of the CO2 neutrality of biomass and likely governmental incentives to reduce CO2 emissions, the study results show that biomass and coal co-firing would result in both lower cost of carbon avoided (carbon capture) and lower incremental cost of electricity generation when MEA solvent carbon capture is applied. Two scenarios for co-firing with carbon capture, 30% biomass blending and 90% or 60% CO2 capture from stack, indicate different preference depending on lower or higher incentives.\",\"PeriodicalId\":7336,\"journal\":{\"name\":\"Advances in Material Sciences and Engineering\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Material Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32732/ase.2020.12.2.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Material Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32732/ase.2020.12.2.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过电厂设备设计因素和性能,总结相关的CAPEX和OPEX细分,对生物质和煤共烧对电厂碳捕集的影响进行了详细的经济评估。基于生物质二氧化碳中性的假设和政府可能采取的减少二氧化碳排放的激励措施,研究结果表明,当采用MEA溶剂碳捕集时,生物质和煤炭共烧将导致更低的碳避免成本(碳捕集)和更低的发电增量成本。碳捕集共烧的两种方案,即30%的生物质混合和90%或60%的二氧化碳捕集,显示出不同的偏好,取决于激励措施的高低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Impact of Coal and Biomass Co-Firing on the Economy of Power Plant Carbon Capture
A detailed economic evaluation was carried out to determine the impact of biomass and coal co-firing on power plant carbon capture by methods of plants equipment designing factors and performance, and the sum up of the associated breakdowns of CAPEX and OPEX. Based on the assumptions of the CO2 neutrality of biomass and likely governmental incentives to reduce CO2 emissions, the study results show that biomass and coal co-firing would result in both lower cost of carbon avoided (carbon capture) and lower incremental cost of electricity generation when MEA solvent carbon capture is applied. Two scenarios for co-firing with carbon capture, 30% biomass blending and 90% or 60% CO2 capture from stack, indicate different preference depending on lower or higher incentives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信