{"title":"基于神经网络和支持向量机方法的汽轮机减振节能策略开发","authors":"Yasir Rafique, A. Hussain","doi":"10.3390/engproc2021012065","DOIUrl":null,"url":null,"abstract":"The energy efficiency of a power plant is largely determined by the vibrations of bearings that hold the shaft rotating at high speed which need to be critically controlled. This study presents the relative vibration modeling of a shaft bearing that is installed in a 660 MW supercritical steam turbine system. The operational data in raw form after being cleaned using machine learning based visualization and extensive data processing helped in training and validation of SVM and ANN models which are then compared by external validation tests. The model with best results is then used for the simulations of constructed operating scenarios. The ANN has been further tested for the complete operational load range (353 MW to 662 MW) which predicted the reduction in relative vibrations. Moreover, the validated ANN model has been used to develop many strategies of vibration reduction which helped in achieving more than 4% reduction in relative vibrations. Subsequently, an operational strategy that predicts a significant reduction in the bearing vibration levels is selected. For confirmation of the accuracy of prediction by ANN process model, the selected strategy has been used with the actual power plant. This assures the significant reduction of bearing vibration less than the alarm limit.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":"340 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Efficient Strategy Development of Steam Turbine through Vibration Reduction Using ANN and SVM Approaches\",\"authors\":\"Yasir Rafique, A. Hussain\",\"doi\":\"10.3390/engproc2021012065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy efficiency of a power plant is largely determined by the vibrations of bearings that hold the shaft rotating at high speed which need to be critically controlled. This study presents the relative vibration modeling of a shaft bearing that is installed in a 660 MW supercritical steam turbine system. The operational data in raw form after being cleaned using machine learning based visualization and extensive data processing helped in training and validation of SVM and ANN models which are then compared by external validation tests. The model with best results is then used for the simulations of constructed operating scenarios. The ANN has been further tested for the complete operational load range (353 MW to 662 MW) which predicted the reduction in relative vibrations. Moreover, the validated ANN model has been used to develop many strategies of vibration reduction which helped in achieving more than 4% reduction in relative vibrations. Subsequently, an operational strategy that predicts a significant reduction in the bearing vibration levels is selected. For confirmation of the accuracy of prediction by ANN process model, the selected strategy has been used with the actual power plant. This assures the significant reduction of bearing vibration less than the alarm limit.\",\"PeriodicalId\":11748,\"journal\":{\"name\":\"Engineering Proceedings\",\"volume\":\"340 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/engproc2021012065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy Efficient Strategy Development of Steam Turbine through Vibration Reduction Using ANN and SVM Approaches
The energy efficiency of a power plant is largely determined by the vibrations of bearings that hold the shaft rotating at high speed which need to be critically controlled. This study presents the relative vibration modeling of a shaft bearing that is installed in a 660 MW supercritical steam turbine system. The operational data in raw form after being cleaned using machine learning based visualization and extensive data processing helped in training and validation of SVM and ANN models which are then compared by external validation tests. The model with best results is then used for the simulations of constructed operating scenarios. The ANN has been further tested for the complete operational load range (353 MW to 662 MW) which predicted the reduction in relative vibrations. Moreover, the validated ANN model has been used to develop many strategies of vibration reduction which helped in achieving more than 4% reduction in relative vibrations. Subsequently, an operational strategy that predicts a significant reduction in the bearing vibration levels is selected. For confirmation of the accuracy of prediction by ANN process model, the selected strategy has been used with the actual power plant. This assures the significant reduction of bearing vibration less than the alarm limit.