主动气流控制应用中稳态射流与扫掠射流的数值比较

S. Aram, A. DeJong
{"title":"主动气流控制应用中稳态射流与扫掠射流的数值比较","authors":"S. Aram, A. DeJong","doi":"10.1115/FEDSM2018-83083","DOIUrl":null,"url":null,"abstract":"A computational study is conducted to compare the performance of an array of steady jets and sweeping jets (generated by fluidic oscillator) interacting with an attached turbulent cross flow. Both jets operate at the same supply rate and with the jet-to-freestream velocity ratio of three. Two array spacings are considered in this study; one is chosen based on the minimum possible distance between the adjacent fluidic oscillators, and the other spacing represents an actuator’s configuration with the least interaction between jets. The improved delayed detached eddy simulation model is employed as a high fidelity turbulence modeling approach to resolve accurately the flow structures. Formation of strong vortex pairs is observed in both actuation techniques with the opposite sense of rotation between them. As expected, the sweeping jet affects a wider region of incoming turbulent flow along the spanwise direction compared to the steady jet. Examining the turbulence properties of the flow downstream of the jets indicates that the sweeping jet is a better candidate for enhancing the mixing mechanism used to control separation. Comparing both the instantaneous and time-averaged flow fields generated by the sweeping jets and steady jets reveals that the interaction between the adjacent sweeping jets at the minimum spacing arrangement is significantly stronger than that of the steady jets.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Comparison Between Steady and Sweeping Jets for Active Flow Control Applications\",\"authors\":\"S. Aram, A. DeJong\",\"doi\":\"10.1115/FEDSM2018-83083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computational study is conducted to compare the performance of an array of steady jets and sweeping jets (generated by fluidic oscillator) interacting with an attached turbulent cross flow. Both jets operate at the same supply rate and with the jet-to-freestream velocity ratio of three. Two array spacings are considered in this study; one is chosen based on the minimum possible distance between the adjacent fluidic oscillators, and the other spacing represents an actuator’s configuration with the least interaction between jets. The improved delayed detached eddy simulation model is employed as a high fidelity turbulence modeling approach to resolve accurately the flow structures. Formation of strong vortex pairs is observed in both actuation techniques with the opposite sense of rotation between them. As expected, the sweeping jet affects a wider region of incoming turbulent flow along the spanwise direction compared to the steady jet. Examining the turbulence properties of the flow downstream of the jets indicates that the sweeping jet is a better candidate for enhancing the mixing mechanism used to control separation. Comparing both the instantaneous and time-averaged flow fields generated by the sweeping jets and steady jets reveals that the interaction between the adjacent sweeping jets at the minimum spacing arrangement is significantly stronger than that of the steady jets.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过计算研究,比较了稳定射流阵列和由射流振荡器产生的横扫射流阵列与附加湍流交叉流相互作用的性能。两种射流以相同的供给速率运行,射流与自由流的速度比为3。本研究考虑了两种阵列间距;其中一个是基于相邻流体振荡器之间的最小可能距离来选择的,而另一个间距则代表了射流之间相互作用最小的执行器配置。采用改进的延迟分离涡模拟模型作为一种高保真度的湍流建模方法来精确解析流动结构。在两种驱动技术中都观察到强涡对的形成,它们之间的旋转方向相反。正如预期的那样,与稳定射流相比,掠流射流沿展向影响更大区域的来流湍流。对射流下游湍流特性的研究表明,掠流射流是加强混合机制以控制分离的较好选择。对比掠射射流与定常射流产生的瞬时流场和时均流场,发现在最小间距布置下相邻掠射射流之间的相互作用明显强于定常射流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Comparison Between Steady and Sweeping Jets for Active Flow Control Applications
A computational study is conducted to compare the performance of an array of steady jets and sweeping jets (generated by fluidic oscillator) interacting with an attached turbulent cross flow. Both jets operate at the same supply rate and with the jet-to-freestream velocity ratio of three. Two array spacings are considered in this study; one is chosen based on the minimum possible distance between the adjacent fluidic oscillators, and the other spacing represents an actuator’s configuration with the least interaction between jets. The improved delayed detached eddy simulation model is employed as a high fidelity turbulence modeling approach to resolve accurately the flow structures. Formation of strong vortex pairs is observed in both actuation techniques with the opposite sense of rotation between them. As expected, the sweeping jet affects a wider region of incoming turbulent flow along the spanwise direction compared to the steady jet. Examining the turbulence properties of the flow downstream of the jets indicates that the sweeping jet is a better candidate for enhancing the mixing mechanism used to control separation. Comparing both the instantaneous and time-averaged flow fields generated by the sweeping jets and steady jets reveals that the interaction between the adjacent sweeping jets at the minimum spacing arrangement is significantly stronger than that of the steady jets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信