基于b进整数的数字方法的推广

Roswitha Hofer, Isabel Pirsic
{"title":"基于b进整数的数字方法的推广","authors":"Roswitha Hofer, Isabel Pirsic","doi":"10.1515/udt-2018-0005","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a hybridization of digital sequences with uniformly distributed sequences in the domain of b-adic integers, ℤb,b ∈ℕ \\ {1}, by using such sequences as input for generating matrices. The generating matrices are then naturally required to have finite row-lengths. We exhibit some relations of the ‘classical’ digital method to our extended version, and also give several examples of new constructions with their respective quality assessments in terms of t, T and discrepancy.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"36 1","pages":"107 - 87"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extension of the Digital Method Based on b-Adic Integers\",\"authors\":\"Roswitha Hofer, Isabel Pirsic\",\"doi\":\"10.1515/udt-2018-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce a hybridization of digital sequences with uniformly distributed sequences in the domain of b-adic integers, ℤb,b ∈ℕ \\\\ {1}, by using such sequences as input for generating matrices. The generating matrices are then naturally required to have finite row-lengths. We exhibit some relations of the ‘classical’ digital method to our extended version, and also give several examples of new constructions with their respective quality assessments in terms of t, T and discrepancy.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"36 1\",\"pages\":\"107 - 87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/udt-2018-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/udt-2018-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要引入了b进整数域上均匀分布序列与数字序列的杂化,并将其作为生成矩阵的输入。生成矩阵自然要求具有有限的行长度。我们展示了“经典”数字方法与我们扩展版本的一些关系,并给出了几个新结构的例子,以及它们各自在t, t和差异方面的质量评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Extension of the Digital Method Based on b-Adic Integers
Abstract We introduce a hybridization of digital sequences with uniformly distributed sequences in the domain of b-adic integers, ℤb,b ∈ℕ \ {1}, by using such sequences as input for generating matrices. The generating matrices are then naturally required to have finite row-lengths. We exhibit some relations of the ‘classical’ digital method to our extended version, and also give several examples of new constructions with their respective quality assessments in terms of t, T and discrepancy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信