{"title":"一般动态边界条件下热方程的Stackelberg-Nash零可控性","authors":"I. Boutaayamou, L. Maniar, O. Oukdach","doi":"10.3934/eect.2021044","DOIUrl":null,"url":null,"abstract":"This paper deals with the hierarchical control of the anisotropic heat equation with dynamic boundary conditions and drift terms. We use the Stackelberg-Nash strategy with one leader and two followers. To each fixed leader, we find a Nash equilibrium corresponding to a bi-objective optimal control problem for the followers. Then, by some new Carleman estimates, we prove a null controllability result.","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"27 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stackelberg-Nash null controllability of heat equation with general dynamic boundary conditions\",\"authors\":\"I. Boutaayamou, L. Maniar, O. Oukdach\",\"doi\":\"10.3934/eect.2021044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the hierarchical control of the anisotropic heat equation with dynamic boundary conditions and drift terms. We use the Stackelberg-Nash strategy with one leader and two followers. To each fixed leader, we find a Nash equilibrium corresponding to a bi-objective optimal control problem for the followers. Then, by some new Carleman estimates, we prove a null controllability result.\",\"PeriodicalId\":48833,\"journal\":{\"name\":\"Evolution Equations and Control Theory\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations and Control Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2021044\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2021044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stackelberg-Nash null controllability of heat equation with general dynamic boundary conditions
This paper deals with the hierarchical control of the anisotropic heat equation with dynamic boundary conditions and drift terms. We use the Stackelberg-Nash strategy with one leader and two followers. To each fixed leader, we find a Nash equilibrium corresponding to a bi-objective optimal control problem for the followers. Then, by some new Carleman estimates, we prove a null controllability result.
期刊介绍:
EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include:
* Modeling of physical systems as infinite-dimensional processes
* Direct problems such as existence, regularity and well-posedness
* Stability, long-time behavior and associated dynamical attractors
* Indirect problems such as exact controllability, reachability theory and inverse problems
* Optimization - including shape optimization - optimal control, game theory and calculus of variations
* Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s)
* Applications of the theory to physics, chemistry, engineering, economics, medicine and biology