{"title":"用多维区间算法求解区间线性方程组的现实容错解","authors":"A. Piegat, M. Pluciński","doi":"10.34768/amcs-2023-0018","DOIUrl":null,"url":null,"abstract":"Abstract The paper presents a method of determining the robustness of solutions of systems of interval linear equations (ILEs). The method can be applied also for the ILE systems for which it has been impossible to find solutions so far or for which solutions in the form of improper intervals have been obtained (which cannot be implemented in practice). The research conducted by the authors has shown that for many problems it is impossible to arrive at ideal solutions that would be fully robust to data uncertainty. However, partially robust solutions can be obtained, and those with the highest robustness can be selected and put into practice. The paper shows that the degree of robustness to the uncertainty of the entire system can be calculated on the basis of the degrees of robustness of individual equations, which greatly simplifies calculations. The presented method is illustrated with a series of examples (also benchmark ones) that facilitate its understanding. It is an extension of the authors’ previously published method for first-order ILEs.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"19 1","pages":"229 - 247"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Realistic Tolerant Solution of a System of Interval Linear Equations with the Use of Multidimensional Interval Arithmetic\",\"authors\":\"A. Piegat, M. Pluciński\",\"doi\":\"10.34768/amcs-2023-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper presents a method of determining the robustness of solutions of systems of interval linear equations (ILEs). The method can be applied also for the ILE systems for which it has been impossible to find solutions so far or for which solutions in the form of improper intervals have been obtained (which cannot be implemented in practice). The research conducted by the authors has shown that for many problems it is impossible to arrive at ideal solutions that would be fully robust to data uncertainty. However, partially robust solutions can be obtained, and those with the highest robustness can be selected and put into practice. The paper shows that the degree of robustness to the uncertainty of the entire system can be calculated on the basis of the degrees of robustness of individual equations, which greatly simplifies calculations. The presented method is illustrated with a series of examples (also benchmark ones) that facilitate its understanding. It is an extension of the authors’ previously published method for first-order ILEs.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"19 1\",\"pages\":\"229 - 247\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2023-0018\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Realistic Tolerant Solution of a System of Interval Linear Equations with the Use of Multidimensional Interval Arithmetic
Abstract The paper presents a method of determining the robustness of solutions of systems of interval linear equations (ILEs). The method can be applied also for the ILE systems for which it has been impossible to find solutions so far or for which solutions in the form of improper intervals have been obtained (which cannot be implemented in practice). The research conducted by the authors has shown that for many problems it is impossible to arrive at ideal solutions that would be fully robust to data uncertainty. However, partially robust solutions can be obtained, and those with the highest robustness can be selected and put into practice. The paper shows that the degree of robustness to the uncertainty of the entire system can be calculated on the basis of the degrees of robustness of individual equations, which greatly simplifies calculations. The presented method is illustrated with a series of examples (also benchmark ones) that facilitate its understanding. It is an extension of the authors’ previously published method for first-order ILEs.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.