基于视觉同义词集的大规模图像标注

David Tsai, Yushi Jing, Yi Liu, H. Rowley, Sergey Ioffe, James M. Rehg
{"title":"基于视觉同义词集的大规模图像标注","authors":"David Tsai, Yushi Jing, Yi Liu, H. Rowley, Sergey Ioffe, James M. Rehg","doi":"10.1109/ICCV.2011.6126295","DOIUrl":null,"url":null,"abstract":"We address the problem of large-scale annotation of web images. Our approach is based on the concept of visual synset, which is an organization of images which are visually-similar and semantically-related. Each visual synset represents a single prototypical visual concept, and has an associated set of weighted annotations. Linear SVM's are utilized to predict the visual synset membership for unseen image examples, and a weighted voting rule is used to construct a ranked list of predicted annotations from a set of visual synsets. We demonstrate that visual synsets lead to better performance than standard methods on a new annotation database containing more than 200 million im- ages and 300 thousand annotations, which is the largest ever reported","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"27 1","pages":"611-618"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Large-scale image annotation using visual synset\",\"authors\":\"David Tsai, Yushi Jing, Yi Liu, H. Rowley, Sergey Ioffe, James M. Rehg\",\"doi\":\"10.1109/ICCV.2011.6126295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of large-scale annotation of web images. Our approach is based on the concept of visual synset, which is an organization of images which are visually-similar and semantically-related. Each visual synset represents a single prototypical visual concept, and has an associated set of weighted annotations. Linear SVM's are utilized to predict the visual synset membership for unseen image examples, and a weighted voting rule is used to construct a ranked list of predicted annotations from a set of visual synsets. We demonstrate that visual synsets lead to better performance than standard methods on a new annotation database containing more than 200 million im- ages and 300 thousand annotations, which is the largest ever reported\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"27 1\",\"pages\":\"611-618\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

我们解决了网络图像的大规模标注问题。我们的方法是基于视觉同义词集的概念,它是视觉相似和语义相关的图像的组织。每个视觉同义词集代表一个单一的原型视觉概念,并具有一组相关的加权注释。利用线性支持向量机预测未见图像样本的视觉同义词集隶属度,并使用加权投票规则从一组视觉同义词集构建预测注释的排序列表。我们证明了在包含超过2亿个图像和30万个注释的新注释数据库上,视觉同义词集比标准方法具有更好的性能,这是迄今为止报道的最大的注释数据库
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale image annotation using visual synset
We address the problem of large-scale annotation of web images. Our approach is based on the concept of visual synset, which is an organization of images which are visually-similar and semantically-related. Each visual synset represents a single prototypical visual concept, and has an associated set of weighted annotations. Linear SVM's are utilized to predict the visual synset membership for unseen image examples, and a weighted voting rule is used to construct a ranked list of predicted annotations from a set of visual synsets. We demonstrate that visual synsets lead to better performance than standard methods on a new annotation database containing more than 200 million im- ages and 300 thousand annotations, which is the largest ever reported
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信