球的伯格曼调和图

IF 1.2 2区 数学 Q1 MATHEMATICS
E. Barletta, S. Dragomir
{"title":"球的伯格曼调和图","authors":"E. Barletta, S. Dragomir","doi":"10.2422/2036-2145.201311_008","DOIUrl":null,"url":null,"abstract":"We study Bergman-harmonic maps between balls 8 : Bn ! BN extending of class either C2 orM1 to the boundary of Bn. For every holomorphic (anti-holomorphic) map 8 : Bn ! BN extending smoothly to the boundary and every smooth homotopy H : 8 ' 9 we prove a Lichnerowicz-type (cf. [28]) result, i.e., we show that E✏ (9) # E✏ (8) + O(✏−n+1). When 8 is proper, Bergman-harmonic, and C2 up to the boundary, the boundary values map % : S2n−1 ! S2N−1 is shown to satisfy a compatibility system similar to the tangential Cauchy-Riemann equations on S2n−1 (and satisfied by the boundary values of any proper holomorphic map). For every weakly Bergman-harmonic map 8 2 W1(Bn,BN ) admitting Sobolev boundary values % 2 M1(S2n−1,BN ) in the sense of [6], the boundary values % are shown to be a weakly subelliptic harmonic map of (S2n−1, ⌘) into (BN , h), provided that 8−1rh stays bounded at the boundary of Bn and % has vanishing weak normal derivatives.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"37 1","pages":"269-307"},"PeriodicalIF":1.2000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bergman-harmonic maps of balls\",\"authors\":\"E. Barletta, S. Dragomir\",\"doi\":\"10.2422/2036-2145.201311_008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Bergman-harmonic maps between balls 8 : Bn ! BN extending of class either C2 orM1 to the boundary of Bn. For every holomorphic (anti-holomorphic) map 8 : Bn ! BN extending smoothly to the boundary and every smooth homotopy H : 8 ' 9 we prove a Lichnerowicz-type (cf. [28]) result, i.e., we show that E✏ (9) # E✏ (8) + O(✏−n+1). When 8 is proper, Bergman-harmonic, and C2 up to the boundary, the boundary values map % : S2n−1 ! S2N−1 is shown to satisfy a compatibility system similar to the tangential Cauchy-Riemann equations on S2n−1 (and satisfied by the boundary values of any proper holomorphic map). For every weakly Bergman-harmonic map 8 2 W1(Bn,BN ) admitting Sobolev boundary values % 2 M1(S2n−1,BN ) in the sense of [6], the boundary values % are shown to be a weakly subelliptic harmonic map of (S2n−1, ⌘) into (BN , h), provided that 8−1rh stays bounded at the boundary of Bn and % has vanishing weak normal derivatives.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"37 1\",\"pages\":\"269-307\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.201311_008\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201311_008","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了球之间的伯格曼调和映射:C2或m1类的BN扩展到BN的边界。对于每个全纯(反全纯)映射8:Bn !我们证明了一个Lichnerowicz-type (cf.[28])的结果,即我们证明了E‐莪(9)# E‐莪(8)+ O(- n+1)。当8是合适的,Bergman-harmonic,且C2达到边界时,边界值映射%:S2n−1 !证明了S2N−1满足与S2N−1上的切向柯西-黎曼方程相似的相容系统(并且满足于任何固有全纯映射的边值)。对于每一个在[6]意义上承认Sobolev边值% 2m1 (S2n−1,Bn)的弱bergman -调和映射82w1 (Bn, Bn),边界值%被证明是(S2n−1,⌘)到(Bn, h)的弱次椭圆调和映射,只要8−1rh在Bn的边界处有界并且%有消失的弱法向导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bergman-harmonic maps of balls
We study Bergman-harmonic maps between balls 8 : Bn ! BN extending of class either C2 orM1 to the boundary of Bn. For every holomorphic (anti-holomorphic) map 8 : Bn ! BN extending smoothly to the boundary and every smooth homotopy H : 8 ' 9 we prove a Lichnerowicz-type (cf. [28]) result, i.e., we show that E✏ (9) # E✏ (8) + O(✏−n+1). When 8 is proper, Bergman-harmonic, and C2 up to the boundary, the boundary values map % : S2n−1 ! S2N−1 is shown to satisfy a compatibility system similar to the tangential Cauchy-Riemann equations on S2n−1 (and satisfied by the boundary values of any proper holomorphic map). For every weakly Bergman-harmonic map 8 2 W1(Bn,BN ) admitting Sobolev boundary values % 2 M1(S2n−1,BN ) in the sense of [6], the boundary values % are shown to be a weakly subelliptic harmonic map of (S2n−1, ⌘) into (BN , h), provided that 8−1rh stays bounded at the boundary of Bn and % has vanishing weak normal derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信