{"title":"完全m-Ary树的Steiner Wiener索引","authors":"Mesfin Masre Legese","doi":"10.22052/IJMC.2021.242136.1552","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For a subset $S$ of $V(G)$, the Steiner distance $d(S)$ of $S$ is the minimum size of a connected subgraph whose vertex set contains $S$. For an integer $k$ with $2 le k le n - 1$, the $k$-th Steiner Wiener index of a graph $G$ is defined as $SW_k(G) = sum_{substack{Ssubseteq V(G)\\ |S|=k}}d(S)$. In this paper, we present exact values of the $k$-th Steiner Wiener index of complete $m$-ary trees by using inclusion-excluision principle for various values of $k$.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":"38 1","pages":"101-109"},"PeriodicalIF":1.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steiner Wiener Index of Complete m-Ary Trees\",\"authors\":\"Mesfin Masre Legese\",\"doi\":\"10.22052/IJMC.2021.242136.1552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For a subset $S$ of $V(G)$, the Steiner distance $d(S)$ of $S$ is the minimum size of a connected subgraph whose vertex set contains $S$. For an integer $k$ with $2 le k le n - 1$, the $k$-th Steiner Wiener index of a graph $G$ is defined as $SW_k(G) = sum_{substack{Ssubseteq V(G)\\\\ |S|=k}}d(S)$. In this paper, we present exact values of the $k$-th Steiner Wiener index of complete $m$-ary trees by using inclusion-excluision principle for various values of $k$.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":\"38 1\",\"pages\":\"101-109\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2021.242136.1552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2021.242136.1552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Let $G$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For a subset $S$ of $V(G)$, the Steiner distance $d(S)$ of $S$ is the minimum size of a connected subgraph whose vertex set contains $S$. For an integer $k$ with $2 le k le n - 1$, the $k$-th Steiner Wiener index of a graph $G$ is defined as $SW_k(G) = sum_{substack{Ssubseteq V(G)\ |S|=k}}d(S)$. In this paper, we present exact values of the $k$-th Steiner Wiener index of complete $m$-ary trees by using inclusion-excluision principle for various values of $k$.