{"title":"关于一致空间的扩张同胚","authors":"A. Barzanouni, E. Shah","doi":"10.2478/ausm-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract We study the notion of expansive homeomorphisms on uniform spaces. It is shown that if there exists a topologically expansive homeomorphism on a uniform space, then the space is always a Hausdor space and hence a regular space. Further, we characterize orbit expansive homeomorphisms in terms of topologically expansive homeomorphisms and conclude that if there exist a topologically expansive homeomorphism on a compact uniform space then the space is always metrizable.","PeriodicalId":43054,"journal":{"name":"Acta Universitatis Sapientiae-Mathematica","volume":"38 1","pages":"292 - 304"},"PeriodicalIF":0.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On expansive homeomorphism of uniform spaces\",\"authors\":\"A. Barzanouni, E. Shah\",\"doi\":\"10.2478/ausm-2021-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the notion of expansive homeomorphisms on uniform spaces. It is shown that if there exists a topologically expansive homeomorphism on a uniform space, then the space is always a Hausdor space and hence a regular space. Further, we characterize orbit expansive homeomorphisms in terms of topologically expansive homeomorphisms and conclude that if there exist a topologically expansive homeomorphism on a compact uniform space then the space is always metrizable.\",\"PeriodicalId\":43054,\"journal\":{\"name\":\"Acta Universitatis Sapientiae-Mathematica\",\"volume\":\"38 1\",\"pages\":\"292 - 304\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae-Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2021-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae-Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2021-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract We study the notion of expansive homeomorphisms on uniform spaces. It is shown that if there exists a topologically expansive homeomorphism on a uniform space, then the space is always a Hausdor space and hence a regular space. Further, we characterize orbit expansive homeomorphisms in terms of topologically expansive homeomorphisms and conclude that if there exist a topologically expansive homeomorphism on a compact uniform space then the space is always metrizable.