{"title":"环面上逆平均曲率流的极限","authors":"Brian Harvie","doi":"10.1090/proc/15812","DOIUrl":null,"url":null,"abstract":"For an $H>0$ rotationally symmetric embedded torus $N_{0} \\subset \\mathbb{R}^{3}$, evolved by Inverse Mean Curvature Flow, we show that the total curvature $|A|$ remains bounded up to the singular time $T_{\\max}$. We then show convergence of the $N_{t}$ to a $C^{1}$ rotationally symmetric embedded torus $N_{T_{\\max}}$ as $t \\rightarrow T_{\\max}$ without rescaling. Later, we observe a scale-invariant $L^{2}$ energy estimate on any embedded solution of the flow in $\\mathbb{R}^{3}$ that may be useful in ruling out curvature blowup near singularities in general.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"165 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Limit of The Inverse Mean Curvature Flow on a Torus\",\"authors\":\"Brian Harvie\",\"doi\":\"10.1090/proc/15812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an $H>0$ rotationally symmetric embedded torus $N_{0} \\\\subset \\\\mathbb{R}^{3}$, evolved by Inverse Mean Curvature Flow, we show that the total curvature $|A|$ remains bounded up to the singular time $T_{\\\\max}$. We then show convergence of the $N_{t}$ to a $C^{1}$ rotationally symmetric embedded torus $N_{T_{\\\\max}}$ as $t \\\\rightarrow T_{\\\\max}$ without rescaling. Later, we observe a scale-invariant $L^{2}$ energy estimate on any embedded solution of the flow in $\\\\mathbb{R}^{3}$ that may be useful in ruling out curvature blowup near singularities in general.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Limit of The Inverse Mean Curvature Flow on a Torus
For an $H>0$ rotationally symmetric embedded torus $N_{0} \subset \mathbb{R}^{3}$, evolved by Inverse Mean Curvature Flow, we show that the total curvature $|A|$ remains bounded up to the singular time $T_{\max}$. We then show convergence of the $N_{t}$ to a $C^{1}$ rotationally symmetric embedded torus $N_{T_{\max}}$ as $t \rightarrow T_{\max}$ without rescaling. Later, we observe a scale-invariant $L^{2}$ energy estimate on any embedded solution of the flow in $\mathbb{R}^{3}$ that may be useful in ruling out curvature blowup near singularities in general.