简单画廊中的拓扑艺术

Daniel Bertschinger, Nicolas El Maalouly, Tillmann Miltzow, P. Schnider, Simon Weber
{"title":"简单画廊中的拓扑艺术","authors":"Daniel Bertschinger, Nicolas El Maalouly, Tillmann Miltzow, P. Schnider, Simon Weber","doi":"10.1137/1.9781611977066.8","DOIUrl":null,"url":null,"abstract":"Let P be a simple polygon, then the art gallery problem is looking for a minimum set of points (guards) that can see every point in P. We say two points $$a,b\\in P$$\n \n a\n ,\n b\n ∈\n P\n \n can see each other if the line segment $${\\text {seg}} (a,b)$$\n \n seg\n (\n a\n ,\n b\n )\n \n is contained in P. We denote by V(P) the family of all minimum guard placements. The Hausdorff distance makes V(P) a metric space and thus a topological space. We show homotopy-universality, that is, for every semi-algebraic set S there is a polygon P such that V(P) is homotopy equivalent to S. Furthermore, for various concrete topological spaces T, we describe instances I of the art gallery problem such that V(I) is homeomorphic to T.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"31 1","pages":"87-116"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Topological Art in Simple Galleries\",\"authors\":\"Daniel Bertschinger, Nicolas El Maalouly, Tillmann Miltzow, P. Schnider, Simon Weber\",\"doi\":\"10.1137/1.9781611977066.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let P be a simple polygon, then the art gallery problem is looking for a minimum set of points (guards) that can see every point in P. We say two points $$a,b\\\\in P$$\\n \\n a\\n ,\\n b\\n ∈\\n P\\n \\n can see each other if the line segment $${\\\\text {seg}} (a,b)$$\\n \\n seg\\n (\\n a\\n ,\\n b\\n )\\n \\n is contained in P. We denote by V(P) the family of all minimum guard placements. The Hausdorff distance makes V(P) a metric space and thus a topological space. We show homotopy-universality, that is, for every semi-algebraic set S there is a polygon P such that V(P) is homotopy equivalent to S. Furthermore, for various concrete topological spaces T, we describe instances I of the art gallery problem such that V(I) is homeomorphic to T.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"31 1\",\"pages\":\"87-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611977066.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977066.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

设P是一个简单的多边形,那么美术馆问题就是寻找能看到P中所有点的最小点集(守卫)。我们说两点$$a,b\in P$$ a, b∈P可以看到彼此,如果线段$${\text {seg}} (a,b)$$ seg (a, b)包含在P中。我们用V(P)表示所有最小守卫位置的集合。豪斯多夫距离使V(P)成为一个度量空间,从而成为一个拓扑空间。我们证明了同伦普适,即对于每一个半代数集S都存在一个多边形P使得V(P)同伦等价于S。此外,对于各种具体拓扑空间T,我们描述了美术馆问题的实例I使得V(I)同胚于T。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Art in Simple Galleries
Let P be a simple polygon, then the art gallery problem is looking for a minimum set of points (guards) that can see every point in P. We say two points $$a,b\in P$$ a , b ∈ P can see each other if the line segment $${\text {seg}} (a,b)$$ seg ( a , b ) is contained in P. We denote by V(P) the family of all minimum guard placements. The Hausdorff distance makes V(P) a metric space and thus a topological space. We show homotopy-universality, that is, for every semi-algebraic set S there is a polygon P such that V(P) is homotopy equivalent to S. Furthermore, for various concrete topological spaces T, we describe instances I of the art gallery problem such that V(I) is homeomorphic to T.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信