{"title":"函数逼近与Mihesan算子","authors":"J. Bustamante","doi":"10.3934/mfc.2022033","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>For real numbers <inline-formula><tex-math id=\"M1\">\\begin{document}$ a,q\\geq 0 $\\end{document}</tex-math></inline-formula> and a weight <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\varrho(x) = 1/(1+x)^q $\\end{document}</tex-math></inline-formula>, the author provides necessary and sufficient conditions for a function <inline-formula><tex-math id=\"M3\">\\begin{document}$ f\\in C[0,\\infty) $\\end{document}</tex-math></inline-formula> in order to <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\sup_{x\\geq 0}\\mid \\varrho(x)(B_n^a(f,x)-f(x))\\mid \\to 0 $\\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id=\"M5\">\\begin{document}$ n\\to \\infty $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M6\">\\begin{document}$ B_n^a(f) $\\end{document}</tex-math></inline-formula> is the Mihesan operator. In particular, it is proved that Mihesan operators behave similar to the classical Baskakov operators.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"19 1","pages":"369-378"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Approximation of functions and Mihesan operators\",\"authors\":\"J. Bustamante\",\"doi\":\"10.3934/mfc.2022033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>For real numbers <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ a,q\\\\geq 0 $\\\\end{document}</tex-math></inline-formula> and a weight <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\varrho(x) = 1/(1+x)^q $\\\\end{document}</tex-math></inline-formula>, the author provides necessary and sufficient conditions for a function <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ f\\\\in C[0,\\\\infty) $\\\\end{document}</tex-math></inline-formula> in order to <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\sup_{x\\\\geq 0}\\\\mid \\\\varrho(x)(B_n^a(f,x)-f(x))\\\\mid \\\\to 0 $\\\\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ n\\\\to \\\\infty $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ B_n^a(f) $\\\\end{document}</tex-math></inline-formula> is the Mihesan operator. In particular, it is proved that Mihesan operators behave similar to the classical Baskakov operators.</p>\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":\"19 1\",\"pages\":\"369-378\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2022033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4
摘要
For real numbers \begin{document}$ a,q\geq 0 $\end{document} and a weight \begin{document}$ \varrho(x) = 1/(1+x)^q $\end{document}, the author provides necessary and sufficient conditions for a function \begin{document}$ f\in C[0,\infty) $\end{document} in order to \begin{document}$ \sup_{x\geq 0}\mid \varrho(x)(B_n^a(f,x)-f(x))\mid \to 0 $\end{document} as \begin{document}$ n\to \infty $\end{document}, where \begin{document}$ B_n^a(f) $\end{document} is the Mihesan operator. In particular, it is proved that Mihesan operators behave similar to the classical Baskakov operators.
For real numbers \begin{document}$ a,q\geq 0 $\end{document} and a weight \begin{document}$ \varrho(x) = 1/(1+x)^q $\end{document}, the author provides necessary and sufficient conditions for a function \begin{document}$ f\in C[0,\infty) $\end{document} in order to \begin{document}$ \sup_{x\geq 0}\mid \varrho(x)(B_n^a(f,x)-f(x))\mid \to 0 $\end{document} as \begin{document}$ n\to \infty $\end{document}, where \begin{document}$ B_n^a(f) $\end{document} is the Mihesan operator. In particular, it is proved that Mihesan operators behave similar to the classical Baskakov operators.