{"title":"$\\mathcal{H}$‑全纯曲线的紧致性结果","authors":"Alexandru Doicu, Urs Fuchs","doi":"10.4310/JSG.2021.V19.N1.A2","DOIUrl":null,"url":null,"abstract":"$\\mathcal{H}-$holomorphic curves are solutions of a specific modification of the pseudoholomorphic curve equation in symplectizations involving a harmonic $1-$form as perturbation term. In this paper we compactify the moduli space of $\\mathcal{H}-$holomorphic curves with a priori bounds on the harmonic $1-$forms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A compactness result for $\\\\mathcal{H}$‑holomorphic curves in symplectizations\",\"authors\":\"Alexandru Doicu, Urs Fuchs\",\"doi\":\"10.4310/JSG.2021.V19.N1.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\mathcal{H}-$holomorphic curves are solutions of a specific modification of the pseudoholomorphic curve equation in symplectizations involving a harmonic $1-$form as perturbation term. In this paper we compactify the moduli space of $\\\\mathcal{H}-$holomorphic curves with a priori bounds on the harmonic $1-$forms.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2021.V19.N1.A2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2021.V19.N1.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A compactness result for $\mathcal{H}$‑holomorphic curves in symplectizations
$\mathcal{H}-$holomorphic curves are solutions of a specific modification of the pseudoholomorphic curve equation in symplectizations involving a harmonic $1-$form as perturbation term. In this paper we compactify the moduli space of $\mathcal{H}-$holomorphic curves with a priori bounds on the harmonic $1-$forms.