基于核分解方案的3-D DIRECT TOF PET重构中长核卷积的高效gpu加速

S. Ha, Zhiyuan Zhang, K. Mueller, S. Matej
{"title":"基于核分解方案的3-D DIRECT TOF PET重构中长核卷积的高效gpu加速","authors":"S. Ha, Zhiyuan Zhang, K. Mueller, S. Matej","doi":"10.1109/NSSMIC.2010.5874319","DOIUrl":null,"url":null,"abstract":"The DIRECT approach for 3-D Time-of-Flight (TOF) PET reconstruction performs all iterative predictor-corrector operations directly in image space. A computational bottleneck here is the convolution with the long TOF (resolution) kernels. Accelerating this convolution operation using GPUs is very important especially for spatially variant resolution kernels, which cannot be efficiently implemented in the Fourier domain. The main challenge here is the memory cache performance at non-axis aligned directions. We devised a scheme that first re-samples the image into an axis-aligned orientation offering good memory coherence for the convolution operations. In order to maintain good accuracy, we carefully design the resampling and new convolution kernels to combine into the original TOF kernel. This paper demonstrates the validity, accuracy, and high speed-performance of our scheme for a comprehensive set of orientation angles. Future work will apply these cascaded kernels within a GPU-accelerated version of DIRECT.","PeriodicalId":13048,"journal":{"name":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","volume":"392 1","pages":"2866-2867"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficiently GPU-accelerating long kernel convolutions in 3-D DIRECT TOF PET reconstruction via a kernel decomposition scheme\",\"authors\":\"S. Ha, Zhiyuan Zhang, K. Mueller, S. Matej\",\"doi\":\"10.1109/NSSMIC.2010.5874319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The DIRECT approach for 3-D Time-of-Flight (TOF) PET reconstruction performs all iterative predictor-corrector operations directly in image space. A computational bottleneck here is the convolution with the long TOF (resolution) kernels. Accelerating this convolution operation using GPUs is very important especially for spatially variant resolution kernels, which cannot be efficiently implemented in the Fourier domain. The main challenge here is the memory cache performance at non-axis aligned directions. We devised a scheme that first re-samples the image into an axis-aligned orientation offering good memory coherence for the convolution operations. In order to maintain good accuracy, we carefully design the resampling and new convolution kernels to combine into the original TOF kernel. This paper demonstrates the validity, accuracy, and high speed-performance of our scheme for a comprehensive set of orientation angles. Future work will apply these cascaded kernels within a GPU-accelerated version of DIRECT.\",\"PeriodicalId\":13048,\"journal\":{\"name\":\"IEEE Nuclear Science Symposuim & Medical Imaging Conference\",\"volume\":\"392 1\",\"pages\":\"2866-2867\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposuim & Medical Imaging Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2010.5874319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2010.5874319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

用于三维飞行时间(TOF) PET重建的DIRECT方法直接在图像空间中执行所有迭代预测校正操作。这里的计算瓶颈是与长TOF(分辨率)核的卷积。使用gpu加速卷积运算是非常重要的,特别是对于空间变分辨率内核,这在傅里叶域中是无法有效实现的。这里的主要挑战是在非轴对齐方向上的内存缓存性能。我们设计了一种方案,首先将图像重新采样到与轴对齐的方向,为卷积操作提供良好的存储一致性。为了保持良好的精度,我们精心设计了重采样和新的卷积核,并将其结合到原始的TOF核中。本文验证了该方案的有效性、准确性和高速性能。未来的工作将在gpu加速版本的DIRECT中应用这些级联内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiently GPU-accelerating long kernel convolutions in 3-D DIRECT TOF PET reconstruction via a kernel decomposition scheme
The DIRECT approach for 3-D Time-of-Flight (TOF) PET reconstruction performs all iterative predictor-corrector operations directly in image space. A computational bottleneck here is the convolution with the long TOF (resolution) kernels. Accelerating this convolution operation using GPUs is very important especially for spatially variant resolution kernels, which cannot be efficiently implemented in the Fourier domain. The main challenge here is the memory cache performance at non-axis aligned directions. We devised a scheme that first re-samples the image into an axis-aligned orientation offering good memory coherence for the convolution operations. In order to maintain good accuracy, we carefully design the resampling and new convolution kernels to combine into the original TOF kernel. This paper demonstrates the validity, accuracy, and high speed-performance of our scheme for a comprehensive set of orientation angles. Future work will apply these cascaded kernels within a GPU-accelerated version of DIRECT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信