{"title":"虚拟同步发电机控制器验证的实时仿真框架","authors":"M. Chowdhury, L. Strayóczky, Z. Sütő","doi":"10.24084/repqj21.299","DOIUrl":null,"url":null,"abstract":"The utilization of active rectifiers as converters in the interface between AC and DC microgrids has become a prevalent practice owing to their capacity to facilitate bidirectional power flow. The contemporary methodology for the development of power converters includes the integration of real-time simulation steps for the validation of control schemes and the assurance of safe implementation with hardware. The present study proposes a methodology for developing a real-time Hardware-in-theLoop (HIL) simulation framework, which aims to facilitate the rapid prototyping of advanced control algorithms for an ActiveFront-End (AFE) rectifier, especially a Virtual Synchronous Generator (VSG) control strategy. This approach aims to enhance the dynamic performance and stability of low-inertia power systems by mimicking the behavior of a synchronous generator, thereby providing virtual inertia to the power system. The control schemes and the primary circuit models are designed and implemented utilizing Matlab/Simulink and are optimized for code generation.","PeriodicalId":21076,"journal":{"name":"Renewable Energy and Power Quality Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Simulation Framework for Validating Controllers of Virtual Synchronous Generators\",\"authors\":\"M. Chowdhury, L. Strayóczky, Z. Sütő\",\"doi\":\"10.24084/repqj21.299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of active rectifiers as converters in the interface between AC and DC microgrids has become a prevalent practice owing to their capacity to facilitate bidirectional power flow. The contemporary methodology for the development of power converters includes the integration of real-time simulation steps for the validation of control schemes and the assurance of safe implementation with hardware. The present study proposes a methodology for developing a real-time Hardware-in-theLoop (HIL) simulation framework, which aims to facilitate the rapid prototyping of advanced control algorithms for an ActiveFront-End (AFE) rectifier, especially a Virtual Synchronous Generator (VSG) control strategy. This approach aims to enhance the dynamic performance and stability of low-inertia power systems by mimicking the behavior of a synchronous generator, thereby providing virtual inertia to the power system. The control schemes and the primary circuit models are designed and implemented utilizing Matlab/Simulink and are optimized for code generation.\",\"PeriodicalId\":21076,\"journal\":{\"name\":\"Renewable Energy and Power Quality Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy and Power Quality Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24084/repqj21.299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy and Power Quality Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24084/repqj21.299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
Real-time Simulation Framework for Validating Controllers of Virtual Synchronous Generators
The utilization of active rectifiers as converters in the interface between AC and DC microgrids has become a prevalent practice owing to their capacity to facilitate bidirectional power flow. The contemporary methodology for the development of power converters includes the integration of real-time simulation steps for the validation of control schemes and the assurance of safe implementation with hardware. The present study proposes a methodology for developing a real-time Hardware-in-theLoop (HIL) simulation framework, which aims to facilitate the rapid prototyping of advanced control algorithms for an ActiveFront-End (AFE) rectifier, especially a Virtual Synchronous Generator (VSG) control strategy. This approach aims to enhance the dynamic performance and stability of low-inertia power systems by mimicking the behavior of a synchronous generator, thereby providing virtual inertia to the power system. The control schemes and the primary circuit models are designed and implemented utilizing Matlab/Simulink and are optimized for code generation.