Yu-bao Liu , Zhi-hong Zhang , Er-xiong Zhao , Xian-heng Zhang , Xiao-qing Wang , Guo-hua Chen
{"title":"预还原铌精矿熔选过程中铌磷行为","authors":"Yu-bao Liu , Zhi-hong Zhang , Er-xiong Zhao , Xian-heng Zhang , Xiao-qing Wang , Guo-hua Chen","doi":"10.1016/S1006-706X(17)30104-8","DOIUrl":null,"url":null,"abstract":"<div><p>The pre-reduced Bayan Obo ferroniobium (FeNb) ore concentrate block was taken as raw materials for studying the physical properties of niobium-enriched slag and changes in niobium recovery rate. In addition, the dephosphorization rate of the slag under different melting-separation conditions was investigated using the melting-separation test. The research results demonstrate that (i) the niobium recovery rate and dephosphorization rate of the slag decrease with the increase in melting-separation temperature; (ii) the niobium recovery rate of the slag initially increases and then decreases with increase in basicity and time; and (iii) the dephosphorization rate of the slag increases with the increase in basicity and time. When the test was performed under the conditions of basicity of 0. 6 – 0. 7, time of 7–10 min, and temperature of 1400–1450 °C, the niobium recovery rate and dephosphorization rate are over 96% and 95%, respectively. By scanning electron microscopy, it is observed that niobium mainly exists in the form of calcium and titanium silicate within the slag phase, with uneven distribution.</p></div>","PeriodicalId":64470,"journal":{"name":"Journal of Iron and Steel Research(International)","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30104-8","citationCount":"0","resultStr":"{\"title\":\"Niobium and phosphorus behavior during melting-separation process of pre-reduced niobium ore concentrate\",\"authors\":\"Yu-bao Liu , Zhi-hong Zhang , Er-xiong Zhao , Xian-heng Zhang , Xiao-qing Wang , Guo-hua Chen\",\"doi\":\"10.1016/S1006-706X(17)30104-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The pre-reduced Bayan Obo ferroniobium (FeNb) ore concentrate block was taken as raw materials for studying the physical properties of niobium-enriched slag and changes in niobium recovery rate. In addition, the dephosphorization rate of the slag under different melting-separation conditions was investigated using the melting-separation test. The research results demonstrate that (i) the niobium recovery rate and dephosphorization rate of the slag decrease with the increase in melting-separation temperature; (ii) the niobium recovery rate of the slag initially increases and then decreases with increase in basicity and time; and (iii) the dephosphorization rate of the slag increases with the increase in basicity and time. When the test was performed under the conditions of basicity of 0. 6 – 0. 7, time of 7–10 min, and temperature of 1400–1450 °C, the niobium recovery rate and dephosphorization rate are over 96% and 95%, respectively. By scanning electron microscopy, it is observed that niobium mainly exists in the form of calcium and titanium silicate within the slag phase, with uneven distribution.</p></div>\",\"PeriodicalId\":64470,\"journal\":{\"name\":\"Journal of Iron and Steel Research(International)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30104-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Iron and Steel Research(International)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1006706X17301048\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research(International)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006706X17301048","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Niobium and phosphorus behavior during melting-separation process of pre-reduced niobium ore concentrate
The pre-reduced Bayan Obo ferroniobium (FeNb) ore concentrate block was taken as raw materials for studying the physical properties of niobium-enriched slag and changes in niobium recovery rate. In addition, the dephosphorization rate of the slag under different melting-separation conditions was investigated using the melting-separation test. The research results demonstrate that (i) the niobium recovery rate and dephosphorization rate of the slag decrease with the increase in melting-separation temperature; (ii) the niobium recovery rate of the slag initially increases and then decreases with increase in basicity and time; and (iii) the dephosphorization rate of the slag increases with the increase in basicity and time. When the test was performed under the conditions of basicity of 0. 6 – 0. 7, time of 7–10 min, and temperature of 1400–1450 °C, the niobium recovery rate and dephosphorization rate are over 96% and 95%, respectively. By scanning electron microscopy, it is observed that niobium mainly exists in the form of calcium and titanium silicate within the slag phase, with uneven distribution.