{"title":"提出了一种面向多核架构的任务模型","authors":"A. Shimada, Balazs Gerofi, A. Hori, Y. Ishikawa","doi":"10.1145/2489068.2489075","DOIUrl":null,"url":null,"abstract":"Many-core processors are gathering attention in the areas of embedded systems due to their power-performance ratios. To utilize cores of a many-core processor in parallel, programmers build multi-task applications that use the task models provided by operating systems. However, the conventional task models cause some scalability problems when multi-task applications are executed on many-core processors. In this paper, a new task model named Partitioned Virtual Address Space (PVAS), which solves the problems, is proposed. PVAS enhances inter-task communications of multi-task applications and averts serialization of concurrent virtual memory operations. Preliminary evaluations by using micro benchmarks showed that PVAS has the potential to promote the performance of multi-task applications that run on many-core processors.","PeriodicalId":84860,"journal":{"name":"Histoire & mesure","volume":"99 1","pages":"45-48"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Proposing a new task model towards many-core architecture\",\"authors\":\"A. Shimada, Balazs Gerofi, A. Hori, Y. Ishikawa\",\"doi\":\"10.1145/2489068.2489075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many-core processors are gathering attention in the areas of embedded systems due to their power-performance ratios. To utilize cores of a many-core processor in parallel, programmers build multi-task applications that use the task models provided by operating systems. However, the conventional task models cause some scalability problems when multi-task applications are executed on many-core processors. In this paper, a new task model named Partitioned Virtual Address Space (PVAS), which solves the problems, is proposed. PVAS enhances inter-task communications of multi-task applications and averts serialization of concurrent virtual memory operations. Preliminary evaluations by using micro benchmarks showed that PVAS has the potential to promote the performance of multi-task applications that run on many-core processors.\",\"PeriodicalId\":84860,\"journal\":{\"name\":\"Histoire & mesure\",\"volume\":\"99 1\",\"pages\":\"45-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histoire & mesure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2489068.2489075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histoire & mesure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2489068.2489075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proposing a new task model towards many-core architecture
Many-core processors are gathering attention in the areas of embedded systems due to their power-performance ratios. To utilize cores of a many-core processor in parallel, programmers build multi-task applications that use the task models provided by operating systems. However, the conventional task models cause some scalability problems when multi-task applications are executed on many-core processors. In this paper, a new task model named Partitioned Virtual Address Space (PVAS), which solves the problems, is proposed. PVAS enhances inter-task communications of multi-task applications and averts serialization of concurrent virtual memory operations. Preliminary evaluations by using micro benchmarks showed that PVAS has the potential to promote the performance of multi-task applications that run on many-core processors.