机器学习和时间序列:现实世界的应用

P. Misra, Siddharth
{"title":"机器学习和时间序列:现实世界的应用","authors":"P. Misra, Siddharth","doi":"10.1109/CCAA.2017.8229832","DOIUrl":null,"url":null,"abstract":"There are in-numerous applications that deal with real scenarios where data are captured over time making them potential candidates for time series analysis. Time series contain temporal dependencies that divide different points in time into different classes. This paper aims at reviewing marriage of a concept i.e. time series modeling with an approach i.e. Machine learning in tackling real life problems. Like time series is ubiquitous and has found extensive usage in our daily life, machine learning approaches have found its applicability in dealing with complex real world scenarios where approximation, uncertainty, chaotic data are prime characteristics.","PeriodicalId":6627,"journal":{"name":"2017 International Conference on Computing, Communication and Automation (ICCCA)","volume":"17 1","pages":"389-394"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Machine learning and time series: Real world applications\",\"authors\":\"P. Misra, Siddharth\",\"doi\":\"10.1109/CCAA.2017.8229832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are in-numerous applications that deal with real scenarios where data are captured over time making them potential candidates for time series analysis. Time series contain temporal dependencies that divide different points in time into different classes. This paper aims at reviewing marriage of a concept i.e. time series modeling with an approach i.e. Machine learning in tackling real life problems. Like time series is ubiquitous and has found extensive usage in our daily life, machine learning approaches have found its applicability in dealing with complex real world scenarios where approximation, uncertainty, chaotic data are prime characteristics.\",\"PeriodicalId\":6627,\"journal\":{\"name\":\"2017 International Conference on Computing, Communication and Automation (ICCCA)\",\"volume\":\"17 1\",\"pages\":\"389-394\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computing, Communication and Automation (ICCCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAA.2017.8229832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Communication and Automation (ICCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAA.2017.8229832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

有许多应用程序处理随着时间推移捕获数据的真实场景,使其成为时间序列分析的潜在候选。时间序列包含将不同时间点划分为不同类别的时间依赖性。本文旨在回顾一个概念的结合,即时间序列建模与一种方法,即机器学习在解决现实生活中的问题。就像时间序列无处不在,在我们的日常生活中得到了广泛的应用一样,机器学习方法在处理复杂的现实世界场景中发现了它的适用性,在这些场景中,近似、不确定性、混沌数据是主要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning and time series: Real world applications
There are in-numerous applications that deal with real scenarios where data are captured over time making them potential candidates for time series analysis. Time series contain temporal dependencies that divide different points in time into different classes. This paper aims at reviewing marriage of a concept i.e. time series modeling with an approach i.e. Machine learning in tackling real life problems. Like time series is ubiquitous and has found extensive usage in our daily life, machine learning approaches have found its applicability in dealing with complex real world scenarios where approximation, uncertainty, chaotic data are prime characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信