{"title":"采用不连续聚醚醚酮/碳纤维热塑性模塑化合物为厚截面构件","authors":"S. Erland, L. Savage","doi":"10.1080/20550340.2019.1639968","DOIUrl":null,"url":null,"abstract":"Abstract The hot-pressing of discontinuous fiber moulding compounds (DFMCs) is an established way of forming geometrically complex components, however, it is not a simple process. Rapid and irreversible cure cycles hinder the use of thermoset resins, and thermoplastic resins offer inferior mechanical performance. The recent availability of DFMCs utilising a Polyether Ether Ketone (PEEK) matrix offer an alternative, combining the usability of thermoplastics with significantly enhanced mechanical properties. A novel manufacturing approach is proposed and investigated, in which virgin material is consolidated into multiple ‘pre-charges’ prior to pressing the final component, combating the limitations of DFMCs; loft, voidage and fiber orientation. Short beam shear tests were employed to assess the mechanical implications of laminating DFMCs, demonstrating minimal differences to a standard sample. Three-point bend tests assessed rudimentary orientation of fiber bundles, showing significantly improved mechanical performance at the cost of toughness. A novel method to determine the interlaminar shear modulus is also presented and successfully validated. Graphical abstract","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The use of discontinuous PEEK/carbon fiber thermoplastic moulding compounds for thick-section componentry\",\"authors\":\"S. Erland, L. Savage\",\"doi\":\"10.1080/20550340.2019.1639968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The hot-pressing of discontinuous fiber moulding compounds (DFMCs) is an established way of forming geometrically complex components, however, it is not a simple process. Rapid and irreversible cure cycles hinder the use of thermoset resins, and thermoplastic resins offer inferior mechanical performance. The recent availability of DFMCs utilising a Polyether Ether Ketone (PEEK) matrix offer an alternative, combining the usability of thermoplastics with significantly enhanced mechanical properties. A novel manufacturing approach is proposed and investigated, in which virgin material is consolidated into multiple ‘pre-charges’ prior to pressing the final component, combating the limitations of DFMCs; loft, voidage and fiber orientation. Short beam shear tests were employed to assess the mechanical implications of laminating DFMCs, demonstrating minimal differences to a standard sample. Three-point bend tests assessed rudimentary orientation of fiber bundles, showing significantly improved mechanical performance at the cost of toughness. A novel method to determine the interlaminar shear modulus is also presented and successfully validated. Graphical abstract\",\"PeriodicalId\":7243,\"journal\":{\"name\":\"Advanced Manufacturing: Polymer & Composites Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Manufacturing: Polymer & Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20550340.2019.1639968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2019.1639968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
The use of discontinuous PEEK/carbon fiber thermoplastic moulding compounds for thick-section componentry
Abstract The hot-pressing of discontinuous fiber moulding compounds (DFMCs) is an established way of forming geometrically complex components, however, it is not a simple process. Rapid and irreversible cure cycles hinder the use of thermoset resins, and thermoplastic resins offer inferior mechanical performance. The recent availability of DFMCs utilising a Polyether Ether Ketone (PEEK) matrix offer an alternative, combining the usability of thermoplastics with significantly enhanced mechanical properties. A novel manufacturing approach is proposed and investigated, in which virgin material is consolidated into multiple ‘pre-charges’ prior to pressing the final component, combating the limitations of DFMCs; loft, voidage and fiber orientation. Short beam shear tests were employed to assess the mechanical implications of laminating DFMCs, demonstrating minimal differences to a standard sample. Three-point bend tests assessed rudimentary orientation of fiber bundles, showing significantly improved mechanical performance at the cost of toughness. A novel method to determine the interlaminar shear modulus is also presented and successfully validated. Graphical abstract