优化《警察与劫匪》中警察数量与抓捕时间之间的权衡

IF 0.4 Q4 MATHEMATICS, APPLIED
A. Bonato, Jane Breen, Boris Brimkov, Joshua Carlson, Sean English, Jesse T. Geneson, L. Hogben, K. Perry, Carolyn Reinhart
{"title":"优化《警察与劫匪》中警察数量与抓捕时间之间的权衡","authors":"A. Bonato, Jane Breen, Boris Brimkov, Joshua Carlson, Sean English, Jesse T. Geneson, L. Hogben, K. Perry, Carolyn Reinhart","doi":"10.4310/joc.2022.v13.n1.a4","DOIUrl":null,"url":null,"abstract":"The cop throttling number $th_c(G)$ of a graph $G$ for the game of Cops and Robbers is the minimum of $k + capt_k(G)$, where $k$ is the number of cops and $capt_k(G)$ is the minimum number of rounds needed for $k$ cops to capture the robber on $G$ over all possible games in which both players play optimally. In this paper, we construct a family of graphs having $th_c(G)= \\Omega(n^{2/3})$, establish a sublinear upper bound on the cop throttling number, and show that the cop throttling number of chordal graphs is $O(\\sqrt{n})$. We also introduce the product cop throttling number $th_c^{\\times}(G)$ as a parameter that minimizes the person-hours used by the cops. This parameter extends the notion of speed-up that has been studied in the context of parallel processing and network decontamination. We establish bounds on the product cop throttling number in terms of the cop throttling number, characterize graphs with low product cop throttling number, and show that for a chordal graph $G$, $th_c^{\\times}=1+rad(G)$.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"139 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimizing the trade-off between number of cops and capture time in Cops and Robbers\",\"authors\":\"A. Bonato, Jane Breen, Boris Brimkov, Joshua Carlson, Sean English, Jesse T. Geneson, L. Hogben, K. Perry, Carolyn Reinhart\",\"doi\":\"10.4310/joc.2022.v13.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cop throttling number $th_c(G)$ of a graph $G$ for the game of Cops and Robbers is the minimum of $k + capt_k(G)$, where $k$ is the number of cops and $capt_k(G)$ is the minimum number of rounds needed for $k$ cops to capture the robber on $G$ over all possible games in which both players play optimally. In this paper, we construct a family of graphs having $th_c(G)= \\\\Omega(n^{2/3})$, establish a sublinear upper bound on the cop throttling number, and show that the cop throttling number of chordal graphs is $O(\\\\sqrt{n})$. We also introduce the product cop throttling number $th_c^{\\\\times}(G)$ as a parameter that minimizes the person-hours used by the cops. This parameter extends the notion of speed-up that has been studied in the context of parallel processing and network decontamination. We establish bounds on the product cop throttling number in terms of the cop throttling number, characterize graphs with low product cop throttling number, and show that for a chordal graph $G$, $th_c^{\\\\times}=1+rad(G)$.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"139 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2022.v13.n1.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2022.v13.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

摘要

对于警察和强盗的游戏,图形$G$的警察节流数$th_c(G)$是$k + capt_k(G)$的最小值,其中$k$是警察的数量,$capt_k(G)$是$k$警察捕获$G$上的强盗所需的最小回合数,在所有可能的游戏中,双方都是最优的。本文构造了具有$th_c(G)= \Omega(n^{2/3})$的图族,建立了弦图的cop节流数的次线性上界,并证明了弦图的cop节流数为$O(\sqrt{n})$。我们还引入了产品警察节流数$th_c^{\times}(G)$作为最小化警察使用的人员小时数的参数。该参数扩展了在并行处理和网络净化环境中研究的加速概念。我们根据系数节流数建立了乘积系数节流数的界,刻画了具有低乘积系数节流数的图,并证明了对于弦图$G$, $th_c^{\times}=1+rad(G)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the trade-off between number of cops and capture time in Cops and Robbers
The cop throttling number $th_c(G)$ of a graph $G$ for the game of Cops and Robbers is the minimum of $k + capt_k(G)$, where $k$ is the number of cops and $capt_k(G)$ is the minimum number of rounds needed for $k$ cops to capture the robber on $G$ over all possible games in which both players play optimally. In this paper, we construct a family of graphs having $th_c(G)= \Omega(n^{2/3})$, establish a sublinear upper bound on the cop throttling number, and show that the cop throttling number of chordal graphs is $O(\sqrt{n})$. We also introduce the product cop throttling number $th_c^{\times}(G)$ as a parameter that minimizes the person-hours used by the cops. This parameter extends the notion of speed-up that has been studied in the context of parallel processing and network decontamination. We establish bounds on the product cop throttling number in terms of the cop throttling number, characterize graphs with low product cop throttling number, and show that for a chordal graph $G$, $th_c^{\times}=1+rad(G)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信