{"title":"准紧(k;m)-空间的不变子流形","authors":"S. Ghosh, A. Sarkar","doi":"10.31926/but.mif.2020.13.62.2.13","DOIUrl":null,"url":null,"abstract":"The object of the present paper is to deduce some necessary and sufficient conditions for invariant Submanifolds of paracontact (κ, µ)-spaces to be totally geodesic. We also establish that a totally umbilical invariant submanifold of a paracontact (κ, µ)-manifold is also totally geodesic. Some more necessary and sufficient conditions for a submanifold of a paracontact (κ, µ)-manifold to be totally geodesic have been deduced using parallelity and pseudo parallelity of the second fundamental form. In the last section we obtain some results on paracontact (κ, µ)-manifold with concircular canonical field.","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":"139 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On invariant submanifolds of paracompact (k;m)-spaces\",\"authors\":\"S. Ghosh, A. Sarkar\",\"doi\":\"10.31926/but.mif.2020.13.62.2.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of the present paper is to deduce some necessary and sufficient conditions for invariant Submanifolds of paracontact (κ, µ)-spaces to be totally geodesic. We also establish that a totally umbilical invariant submanifold of a paracontact (κ, µ)-manifold is also totally geodesic. Some more necessary and sufficient conditions for a submanifold of a paracontact (κ, µ)-manifold to be totally geodesic have been deduced using parallelity and pseudo parallelity of the second fundamental form. In the last section we obtain some results on paracontact (κ, µ)-manifold with concircular canonical field.\",\"PeriodicalId\":38784,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"volume\":\"139 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2020.13.62.2.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2020.13.62.2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On invariant submanifolds of paracompact (k;m)-spaces
The object of the present paper is to deduce some necessary and sufficient conditions for invariant Submanifolds of paracontact (κ, µ)-spaces to be totally geodesic. We also establish that a totally umbilical invariant submanifold of a paracontact (κ, µ)-manifold is also totally geodesic. Some more necessary and sufficient conditions for a submanifold of a paracontact (κ, µ)-manifold to be totally geodesic have been deduced using parallelity and pseudo parallelity of the second fundamental form. In the last section we obtain some results on paracontact (κ, µ)-manifold with concircular canonical field.