对抗实例的检索-增强卷积神经网络

Jake Zhao, Kyunghyun Cho
{"title":"对抗实例的检索-增强卷积神经网络","authors":"Jake Zhao, Kyunghyun Cho","doi":"10.1109/CVPR.2019.01183","DOIUrl":null,"url":null,"abstract":"We propose a retrieval-augmented convolutional network (RaCNN) and propose to train it with local mixup, a novel variant of the recently proposed mixup algorithm. The proposed hybrid architecture combining a convolutional network and an off-the-shelf retrieval engine was designed to mitigate the adverse effect of off-manifold adversarial examples, while the proposed local mixup addresses on-manifold ones by explicitly encouraging the classifier to locally behave linearly on the data manifold. Our evaluation of the proposed approach against seven readilyavailable adversarial attacks on three datasets–CIFAR-10, SVHN and ImageNet–demonstrate the improved robustness compared to a vanilla convolutional network, and comparable performance with the state-of-the-art reactive defense approaches.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"30 1","pages":"11555-11563"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Retrieval-Augmented Convolutional Neural Networks Against Adversarial Examples\",\"authors\":\"Jake Zhao, Kyunghyun Cho\",\"doi\":\"10.1109/CVPR.2019.01183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a retrieval-augmented convolutional network (RaCNN) and propose to train it with local mixup, a novel variant of the recently proposed mixup algorithm. The proposed hybrid architecture combining a convolutional network and an off-the-shelf retrieval engine was designed to mitigate the adverse effect of off-manifold adversarial examples, while the proposed local mixup addresses on-manifold ones by explicitly encouraging the classifier to locally behave linearly on the data manifold. Our evaluation of the proposed approach against seven readilyavailable adversarial attacks on three datasets–CIFAR-10, SVHN and ImageNet–demonstrate the improved robustness compared to a vanilla convolutional network, and comparable performance with the state-of-the-art reactive defense approaches.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"30 1\",\"pages\":\"11555-11563\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.01183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.01183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们提出了一种检索增强卷积网络(RaCNN),并提出用局部混合训练它,局部混合是最近提出的混合算法的一种新变体。所提出的混合架构结合了卷积网络和现成的检索引擎,旨在减轻非流形对抗示例的不利影响,而所提出的局部混合通过明确鼓励分类器在数据流形上局部线性行为来解决非流形的问题。我们对所提出的方法在三个数据集(cifar -10、SVHN和imagenet)上针对七种现成的对抗性攻击的评估表明,与普通卷积网络相比,该方法的鲁棒性得到了提高,性能与最先进的反应性防御方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrieval-Augmented Convolutional Neural Networks Against Adversarial Examples
We propose a retrieval-augmented convolutional network (RaCNN) and propose to train it with local mixup, a novel variant of the recently proposed mixup algorithm. The proposed hybrid architecture combining a convolutional network and an off-the-shelf retrieval engine was designed to mitigate the adverse effect of off-manifold adversarial examples, while the proposed local mixup addresses on-manifold ones by explicitly encouraging the classifier to locally behave linearly on the data manifold. Our evaluation of the proposed approach against seven readilyavailable adversarial attacks on three datasets–CIFAR-10, SVHN and ImageNet–demonstrate the improved robustness compared to a vanilla convolutional network, and comparable performance with the state-of-the-art reactive defense approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信