Chengjun Guo, D. O’Regan, Chengjiang Wang, R. Agarwal
{"title":"超二次二阶哈密顿系统同斜轨道的存在性","authors":"Chengjun Guo, D. O’Regan, Chengjiang Wang, R. Agarwal","doi":"10.4171/ZAA/1527","DOIUrl":null,"url":null,"abstract":"Using critical point theory, we study the existence of homoclinic orbits for the second-order Hamiltonian system z̈ −Kz(t, z) + Vz(t, z) = h(t), where V (t, z) depends periodically on t and is superquadratic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Existence of Homoclinic Orbits of Superquadratic Second-Order Hamiltonian Systems\",\"authors\":\"Chengjun Guo, D. O’Regan, Chengjiang Wang, R. Agarwal\",\"doi\":\"10.4171/ZAA/1527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using critical point theory, we study the existence of homoclinic orbits for the second-order Hamiltonian system z̈ −Kz(t, z) + Vz(t, z) = h(t), where V (t, z) depends periodically on t and is superquadratic.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of Homoclinic Orbits of Superquadratic Second-Order Hamiltonian Systems
Using critical point theory, we study the existence of homoclinic orbits for the second-order Hamiltonian system z̈ −Kz(t, z) + Vz(t, z) = h(t), where V (t, z) depends periodically on t and is superquadratic.