奇叶束的完整群类群

L. MacDonald
{"title":"奇叶束的完整群类群","authors":"L. MacDonald","doi":"10.3842/SIGMA.2021.043","DOIUrl":null,"url":null,"abstract":"We define a notion of connection in a fibre bundle that is compatible with a singular foliation of the base. Fibre bundles equipped with such connections are shown to simultaneously generalise regularly foliated bundles in the sense of Kamber-Tondeur, bundles that are equivariant under the actions Lie groupoids with simply connected source fibres, and singular foliations. We define hierarchies of diffeological holonomy groupoids associated to such bundles, which arise from the parallel transport of germs of local conservation laws on the base that take values in the total space. In particular, for any singular foliation with \"enough\" local conservation laws, our construction recovers the holonomy groupoid defined by Androulidakis and Skandalis as a special case. Finally we prove functoriality of all our constructions under appropriate morphisms.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"199 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Holonomy Groupoids of Singularly Foliated Bundles\",\"authors\":\"L. MacDonald\",\"doi\":\"10.3842/SIGMA.2021.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a notion of connection in a fibre bundle that is compatible with a singular foliation of the base. Fibre bundles equipped with such connections are shown to simultaneously generalise regularly foliated bundles in the sense of Kamber-Tondeur, bundles that are equivariant under the actions Lie groupoids with simply connected source fibres, and singular foliations. We define hierarchies of diffeological holonomy groupoids associated to such bundles, which arise from the parallel transport of germs of local conservation laws on the base that take values in the total space. In particular, for any singular foliation with \\\"enough\\\" local conservation laws, our construction recovers the holonomy groupoid defined by Androulidakis and Skandalis as a special case. Finally we prove functoriality of all our constructions under appropriate morphisms.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2021.043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/SIGMA.2021.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们在纤维束中定义了一个连接的概念,它与基部的奇异叶状相容。具有这种连接的纤维束被证明可以同时推广Kamber-Tondeur意义上的规则叶状束,具有单连通源纤维的李群作用下的等变束,以及奇异叶状束。我们定义了与这些束相关的微分完整群类群的层次,这些群类群是由局部守恒律的胚芽在总空间中取值的基上的平行输运而产生的。特别地,对于任何具有“足够”局部守恒律的奇异叶理,我们的构造恢复了Androulidakis和Skandalis定义的完整群。最后证明了在适当的态射下所有构造的功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Holonomy Groupoids of Singularly Foliated Bundles
We define a notion of connection in a fibre bundle that is compatible with a singular foliation of the base. Fibre bundles equipped with such connections are shown to simultaneously generalise regularly foliated bundles in the sense of Kamber-Tondeur, bundles that are equivariant under the actions Lie groupoids with simply connected source fibres, and singular foliations. We define hierarchies of diffeological holonomy groupoids associated to such bundles, which arise from the parallel transport of germs of local conservation laws on the base that take values in the total space. In particular, for any singular foliation with "enough" local conservation laws, our construction recovers the holonomy groupoid defined by Androulidakis and Skandalis as a special case. Finally we prove functoriality of all our constructions under appropriate morphisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信