{"title":"轨道曲面的数值收缩","authors":"Nathan Grieve","doi":"10.21915/bimas.2021303","DOIUrl":null,"url":null,"abstract":"We study singularities and Artin’s contraction theorem for orbifold surfaces. Our main result has a consequence which is in the direction of the birational Minimal Model Program for bterminal orbifold surfaces. For example, we ascertain the nature of extremal contractions for such b-terminal pairs.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"52 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical contraction for orbifold surfaces\",\"authors\":\"Nathan Grieve\",\"doi\":\"10.21915/bimas.2021303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study singularities and Artin’s contraction theorem for orbifold surfaces. Our main result has a consequence which is in the direction of the birational Minimal Model Program for bterminal orbifold surfaces. For example, we ascertain the nature of extremal contractions for such b-terminal pairs.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2021303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2021303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study singularities and Artin’s contraction theorem for orbifold surfaces. Our main result has a consequence which is in the direction of the birational Minimal Model Program for bterminal orbifold surfaces. For example, we ascertain the nature of extremal contractions for such b-terminal pairs.