以众包和知识库为动力的主体性知识库建设

Hao Xin, Rui Meng, Lei Chen
{"title":"以众包和知识库为动力的主体性知识库建设","authors":"Hao Xin, Rui Meng, Lei Chen","doi":"10.1145/3183713.3183732","DOIUrl":null,"url":null,"abstract":"Knowledge base construction (KBC) has become a hot and in-time topic recently with the increasing application need of large-scale knowledge bases (KBs), such as semantic search, QA systems, the Google Knowledge Graph and IBM Watson QA System. Existing KBs mainly focus on encoding the factual facts of the world, e.g., city area and company product, which are regarded as the objective knowledge, whereas the subjective knowledge, which is frequently mentioned in Web queries, has been neglected. The subjective knowledge has no documented ground truth, instead, the truth relies on people's dominant opinion, which can be solicited from online crowd workers. In our work, we propose a KBC framework for subjective knowledge base construction taking advantage of the knowledge from the crowd and existing KBs. We develop a two-staged framework for subjective KB construction which consists of core subjective KB construction and subjective KB enrichment. Firstly, we try to build a core subjective KB mined from existing KBs, where every instance has rich objective properties. Then, we populate the core subjective KB with instances extracted from existing KBs, in which the crowd is leverage to annotate the subjective property of the instances. In order to optimize the crowd annotation process, we formulate the problem of subjective KB enrichment procedure as a cost-aware instance annotation problem and propose two instance annotation algorithms, i.e., adaptive instance annotation and batch-mode instance annotation algorithms. We develop a two-stage system for subjective KB construction which consists of core subjective KB construction and subjective knowledge enrichment. We evaluate our framework on real knowledge bases and a real crowdsourcing platform, the experimental results show that we can derive high quality subjective knowledge facts from existing KBs and crowdsourcing techniques through our proposed framework.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Subjective Knowledge Base Construction Powered By Crowdsourcing and Knowledge Base\",\"authors\":\"Hao Xin, Rui Meng, Lei Chen\",\"doi\":\"10.1145/3183713.3183732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge base construction (KBC) has become a hot and in-time topic recently with the increasing application need of large-scale knowledge bases (KBs), such as semantic search, QA systems, the Google Knowledge Graph and IBM Watson QA System. Existing KBs mainly focus on encoding the factual facts of the world, e.g., city area and company product, which are regarded as the objective knowledge, whereas the subjective knowledge, which is frequently mentioned in Web queries, has been neglected. The subjective knowledge has no documented ground truth, instead, the truth relies on people's dominant opinion, which can be solicited from online crowd workers. In our work, we propose a KBC framework for subjective knowledge base construction taking advantage of the knowledge from the crowd and existing KBs. We develop a two-staged framework for subjective KB construction which consists of core subjective KB construction and subjective KB enrichment. Firstly, we try to build a core subjective KB mined from existing KBs, where every instance has rich objective properties. Then, we populate the core subjective KB with instances extracted from existing KBs, in which the crowd is leverage to annotate the subjective property of the instances. In order to optimize the crowd annotation process, we formulate the problem of subjective KB enrichment procedure as a cost-aware instance annotation problem and propose two instance annotation algorithms, i.e., adaptive instance annotation and batch-mode instance annotation algorithms. We develop a two-stage system for subjective KB construction which consists of core subjective KB construction and subjective knowledge enrichment. We evaluate our framework on real knowledge bases and a real crowdsourcing platform, the experimental results show that we can derive high quality subjective knowledge facts from existing KBs and crowdsourcing techniques through our proposed framework.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3183732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3183732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

近年来,随着语义搜索、问答系统、谷歌知识图谱、IBM沃森问答系统等大规模知识库的应用需求日益增加,知识库建设(KBC)成为一个热门话题。现有的KBs主要集中于对世界上的事实进行编码,如城市区域、公司产品等,这些都被认为是客观知识,而在Web查询中经常被提及的主观知识却被忽略了。主观知识没有证据证明的基础真理,相反,真理依赖于人们的主导意见,这可以从网络众工那里征求。在我们的工作中,我们提出了一个利用群体知识和现有知识库构建主观知识库的KBC框架。本文提出了主体知识库构建的两阶段框架,即核心主体知识库构建和主体知识库充实。首先,我们尝试从现有知识库中挖掘核心主观知识库,其中每个实例都具有丰富的客观属性。然后,我们用从现有知识库中提取的实例填充核心主观知识库,其中人群可以用来注释实例的主观属性。为了优化群体标注过程,我们将主观知识库充实过程问题表述为成本感知的实例标注问题,提出了自适应实例标注和批处理实例标注两种实例标注算法。本文提出了主体知识库构建的两阶段体系,即核心主体知识库构建和主体知识充实。我们在真实的知识库和众包平台上对我们的框架进行了评估,实验结果表明,通过我们提出的框架,我们可以从现有的知识库和众包技术中获得高质量的主观知识事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subjective Knowledge Base Construction Powered By Crowdsourcing and Knowledge Base
Knowledge base construction (KBC) has become a hot and in-time topic recently with the increasing application need of large-scale knowledge bases (KBs), such as semantic search, QA systems, the Google Knowledge Graph and IBM Watson QA System. Existing KBs mainly focus on encoding the factual facts of the world, e.g., city area and company product, which are regarded as the objective knowledge, whereas the subjective knowledge, which is frequently mentioned in Web queries, has been neglected. The subjective knowledge has no documented ground truth, instead, the truth relies on people's dominant opinion, which can be solicited from online crowd workers. In our work, we propose a KBC framework for subjective knowledge base construction taking advantage of the knowledge from the crowd and existing KBs. We develop a two-staged framework for subjective KB construction which consists of core subjective KB construction and subjective KB enrichment. Firstly, we try to build a core subjective KB mined from existing KBs, where every instance has rich objective properties. Then, we populate the core subjective KB with instances extracted from existing KBs, in which the crowd is leverage to annotate the subjective property of the instances. In order to optimize the crowd annotation process, we formulate the problem of subjective KB enrichment procedure as a cost-aware instance annotation problem and propose two instance annotation algorithms, i.e., adaptive instance annotation and batch-mode instance annotation algorithms. We develop a two-stage system for subjective KB construction which consists of core subjective KB construction and subjective knowledge enrichment. We evaluate our framework on real knowledge bases and a real crowdsourcing platform, the experimental results show that we can derive high quality subjective knowledge facts from existing KBs and crowdsourcing techniques through our proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信