{"title":"RCD空间上调和函数的强唯一延拓失效","authors":"Qintao Deng, Xinrui Zhao","doi":"10.1515/crelle-2022-0090","DOIUrl":null,"url":null,"abstract":"Abstract Unique continuation of harmonic functions on RCD {\\operatorname{RCD}} space is a long-standing open problem, with little known even in the setting of Alexandrov spaces. In this paper, we establish the weak unique continuation theorem for harmonic functions on RCD ( K , 2 ) {\\operatorname{RCD}(K,2)} spaces and give a counterexample for strong unique continuation in the setting of RCD ( K , N ) {\\operatorname{RCD}(K,N)} space for any N ≥ 4 {N\\geq 4} and any K ∈ ℝ {K\\in\\mathbb{R}} .","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"34 1","pages":"221 - 241"},"PeriodicalIF":1.2000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Failure of strong unique continuation for harmonic functions on RCD spaces\",\"authors\":\"Qintao Deng, Xinrui Zhao\",\"doi\":\"10.1515/crelle-2022-0090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Unique continuation of harmonic functions on RCD {\\\\operatorname{RCD}} space is a long-standing open problem, with little known even in the setting of Alexandrov spaces. In this paper, we establish the weak unique continuation theorem for harmonic functions on RCD ( K , 2 ) {\\\\operatorname{RCD}(K,2)} spaces and give a counterexample for strong unique continuation in the setting of RCD ( K , N ) {\\\\operatorname{RCD}(K,N)} space for any N ≥ 4 {N\\\\geq 4} and any K ∈ ℝ {K\\\\in\\\\mathbb{R}} .\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"34 1\",\"pages\":\"221 - 241\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0090\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0090","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Failure of strong unique continuation for harmonic functions on RCD spaces
Abstract Unique continuation of harmonic functions on RCD {\operatorname{RCD}} space is a long-standing open problem, with little known even in the setting of Alexandrov spaces. In this paper, we establish the weak unique continuation theorem for harmonic functions on RCD ( K , 2 ) {\operatorname{RCD}(K,2)} spaces and give a counterexample for strong unique continuation in the setting of RCD ( K , N ) {\operatorname{RCD}(K,N)} space for any N ≥ 4 {N\geq 4} and any K ∈ ℝ {K\in\mathbb{R}} .
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.