间歇混合过程的在线半监督质量预测模型

Mingtao Zhang, Bocheng Chen, You Wu, Wei-wei Deng, Xuelei Zhang, Yi Liu
{"title":"间歇混合过程的在线半监督质量预测模型","authors":"Mingtao Zhang, Bocheng Chen, You Wu, Wei-wei Deng, Xuelei Zhang, Yi Liu","doi":"10.1109/DDCLS.2018.8516014","DOIUrl":null,"url":null,"abstract":"Current soft sensors for the Mooney viscosity prediction in rubber mixing processes only utilized the limited labeled data. By exploring the unlabeled data, a novel soft sensor, namely just-in-time semi-supervised extreme learning machine (JSELM), is presented to online predict the Mooney viscosity with multiple recipes. It integrates the just-in-time learning, extreme learning machine (ELM), and the graph Laplacian regularization into a unified online modeling framework. When a test sample is inquired online, the useful information in both of similar labeled and unlabeled data is absorbed into the JSELM model to enhance its prediction performance. Moreover, an efficient model selection strategy is formulated for online construction of the JSELM prediction model. The superiority of JSELM is validated via the industrial Mooney viscosity prediction.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"30 1","pages":"893-898"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Semi-supervised Quality Prediction Model for Batch Mixing Process\",\"authors\":\"Mingtao Zhang, Bocheng Chen, You Wu, Wei-wei Deng, Xuelei Zhang, Yi Liu\",\"doi\":\"10.1109/DDCLS.2018.8516014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current soft sensors for the Mooney viscosity prediction in rubber mixing processes only utilized the limited labeled data. By exploring the unlabeled data, a novel soft sensor, namely just-in-time semi-supervised extreme learning machine (JSELM), is presented to online predict the Mooney viscosity with multiple recipes. It integrates the just-in-time learning, extreme learning machine (ELM), and the graph Laplacian regularization into a unified online modeling framework. When a test sample is inquired online, the useful information in both of similar labeled and unlabeled data is absorbed into the JSELM model to enhance its prediction performance. Moreover, an efficient model selection strategy is formulated for online construction of the JSELM prediction model. The superiority of JSELM is validated via the industrial Mooney viscosity prediction.\",\"PeriodicalId\":6565,\"journal\":{\"name\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"30 1\",\"pages\":\"893-898\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2018.8516014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前用于橡胶混合过程中穆尼粘度预测的软传感器仅利用有限的标记数据。通过对未标记数据的探索,提出了一种新的软传感器,即即时半监督极限学习机(JSELM),用于在线预测多种配方的Mooney粘度。它将即时学习、极限学习机(ELM)和图拉普拉斯正则化集成到一个统一的在线建模框架中。当在线查询测试样本时,将相似标记和未标记数据中的有用信息吸收到JSELM模型中,以提高其预测性能。为在线构建JSELM预测模型,提出了一种高效的模型选择策略。通过工业穆尼粘度预测验证了JSELM的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Semi-supervised Quality Prediction Model for Batch Mixing Process
Current soft sensors for the Mooney viscosity prediction in rubber mixing processes only utilized the limited labeled data. By exploring the unlabeled data, a novel soft sensor, namely just-in-time semi-supervised extreme learning machine (JSELM), is presented to online predict the Mooney viscosity with multiple recipes. It integrates the just-in-time learning, extreme learning machine (ELM), and the graph Laplacian regularization into a unified online modeling framework. When a test sample is inquired online, the useful information in both of similar labeled and unlabeled data is absorbed into the JSELM model to enhance its prediction performance. Moreover, an efficient model selection strategy is formulated for online construction of the JSELM prediction model. The superiority of JSELM is validated via the industrial Mooney viscosity prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信