Julio Fachrel, Anindya Apriliyanti Pravitasari, I. Yulita, Mulya Nurmansyah Ardhisasmita, F. Indrayatna
{"title":"CNN与CNN- lstm联合胸片检测COVID-19的比较","authors":"Julio Fachrel, Anindya Apriliyanti Pravitasari, I. Yulita, Mulya Nurmansyah Ardhisasmita, F. Indrayatna","doi":"10.5267/j.dsl.2023.2.004","DOIUrl":null,"url":null,"abstract":"COVID-19 detection through radiological examination is favoured since it is fast and produces more accurate results than the laboratory approach. However, when it has infected many people and put a strain on the healthcare system, the need for fast, automatic COVID-19 detection in patients has become critical. This study proposes to detect COVID-19 from chest X-ray (CXR) images with a machine learning approach. The main contributions of this paper are to compare two powerful deep learning models, i.e., convolutional neural networks (CNN) and the combination of CNN and Long Short-Term Memory (LSTM). In the combination model, CNN is recommended for feature extraction, and COVID-19 is classified using the features of LSTM. The dataset used in this study amounted to 4,095 CXR images, consisting of 1,400 images of normal conditions, 1,350 images of COVID-19, and 1,345 images of pneumonia. Both CNN and CNN-LSTM were executed in a similar experimental setup and evaluated using a confusion matrix. The experiment results provide evidence that the CNN-LTSM is better than the CNN deep learning model, with an overall accuracy of about 98.78%. Furthermore, it has a precision and recall of 99% and 98%, respectively. These findings will be valuable in the fast and accurate detection of COVID-19.","PeriodicalId":38141,"journal":{"name":"Decision Science Letters","volume":"262 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comparison between CNN and combined CNN-LSTM for chest X-ray based COVID-19 detection\",\"authors\":\"Julio Fachrel, Anindya Apriliyanti Pravitasari, I. Yulita, Mulya Nurmansyah Ardhisasmita, F. Indrayatna\",\"doi\":\"10.5267/j.dsl.2023.2.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 detection through radiological examination is favoured since it is fast and produces more accurate results than the laboratory approach. However, when it has infected many people and put a strain on the healthcare system, the need for fast, automatic COVID-19 detection in patients has become critical. This study proposes to detect COVID-19 from chest X-ray (CXR) images with a machine learning approach. The main contributions of this paper are to compare two powerful deep learning models, i.e., convolutional neural networks (CNN) and the combination of CNN and Long Short-Term Memory (LSTM). In the combination model, CNN is recommended for feature extraction, and COVID-19 is classified using the features of LSTM. The dataset used in this study amounted to 4,095 CXR images, consisting of 1,400 images of normal conditions, 1,350 images of COVID-19, and 1,345 images of pneumonia. Both CNN and CNN-LSTM were executed in a similar experimental setup and evaluated using a confusion matrix. The experiment results provide evidence that the CNN-LTSM is better than the CNN deep learning model, with an overall accuracy of about 98.78%. Furthermore, it has a precision and recall of 99% and 98%, respectively. These findings will be valuable in the fast and accurate detection of COVID-19.\",\"PeriodicalId\":38141,\"journal\":{\"name\":\"Decision Science Letters\",\"volume\":\"262 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.dsl.2023.2.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.dsl.2023.2.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
A comparison between CNN and combined CNN-LSTM for chest X-ray based COVID-19 detection
COVID-19 detection through radiological examination is favoured since it is fast and produces more accurate results than the laboratory approach. However, when it has infected many people and put a strain on the healthcare system, the need for fast, automatic COVID-19 detection in patients has become critical. This study proposes to detect COVID-19 from chest X-ray (CXR) images with a machine learning approach. The main contributions of this paper are to compare two powerful deep learning models, i.e., convolutional neural networks (CNN) and the combination of CNN and Long Short-Term Memory (LSTM). In the combination model, CNN is recommended for feature extraction, and COVID-19 is classified using the features of LSTM. The dataset used in this study amounted to 4,095 CXR images, consisting of 1,400 images of normal conditions, 1,350 images of COVID-19, and 1,345 images of pneumonia. Both CNN and CNN-LSTM were executed in a similar experimental setup and evaluated using a confusion matrix. The experiment results provide evidence that the CNN-LTSM is better than the CNN deep learning model, with an overall accuracy of about 98.78%. Furthermore, it has a precision and recall of 99% and 98%, respectively. These findings will be valuable in the fast and accurate detection of COVID-19.