{"title":"关于(λ)-对sasaki流形的共形曲率张量","authors":"S. S. Shukla, D. Singh","doi":"10.55937/sut/1330344618","DOIUrl":null,"url":null,"abstract":". In this article, we study ( † )-para Sasakian manifolds with conformal curvature tensor. In this context, we consider conformally flat, quasi-conformally flat and quasi-conformally semi-symmetric ( † )-para Sasakian manifolds. It is proved that ( † )-para Sasakian manifold M n ( n > 3) is conformally flat if and only if it is locally isometric to a pseudo hyperbolic space H nν (1) or to a pseudo sphere S nν (1).","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On conformal curvature tensor of (ϵ)-para Sasakian manifolds\",\"authors\":\"S. S. Shukla, D. Singh\",\"doi\":\"10.55937/sut/1330344618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this article, we study ( † )-para Sasakian manifolds with conformal curvature tensor. In this context, we consider conformally flat, quasi-conformally flat and quasi-conformally semi-symmetric ( † )-para Sasakian manifolds. It is proved that ( † )-para Sasakian manifold M n ( n > 3) is conformally flat if and only if it is locally isometric to a pseudo hyperbolic space H nν (1) or to a pseudo sphere S nν (1).\",\"PeriodicalId\":38708,\"journal\":{\"name\":\"SUT Journal of Mathematics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SUT Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55937/sut/1330344618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1330344618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On conformal curvature tensor of (ϵ)-para Sasakian manifolds
. In this article, we study ( † )-para Sasakian manifolds with conformal curvature tensor. In this context, we consider conformally flat, quasi-conformally flat and quasi-conformally semi-symmetric ( † )-para Sasakian manifolds. It is proved that ( † )-para Sasakian manifold M n ( n > 3) is conformally flat if and only if it is locally isometric to a pseudo hyperbolic space H nν (1) or to a pseudo sphere S nν (1).