关于(λ)-对sasaki流形的共形曲率张量

Q4 Mathematics
S. S. Shukla, D. Singh
{"title":"关于(λ)-对sasaki流形的共形曲率张量","authors":"S. S. Shukla, D. Singh","doi":"10.55937/sut/1330344618","DOIUrl":null,"url":null,"abstract":". In this article, we study ( † )-para Sasakian manifolds with conformal curvature tensor. In this context, we consider conformally flat, quasi-conformally flat and quasi-conformally semi-symmetric ( † )-para Sasakian manifolds. It is proved that ( † )-para Sasakian manifold M n ( n > 3) is conformally flat if and only if it is locally isometric to a pseudo hyperbolic space H nν (1) or to a pseudo sphere S nν (1).","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On conformal curvature tensor of (ϵ)-para Sasakian manifolds\",\"authors\":\"S. S. Shukla, D. Singh\",\"doi\":\"10.55937/sut/1330344618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this article, we study ( † )-para Sasakian manifolds with conformal curvature tensor. In this context, we consider conformally flat, quasi-conformally flat and quasi-conformally semi-symmetric ( † )-para Sasakian manifolds. It is proved that ( † )-para Sasakian manifold M n ( n > 3) is conformally flat if and only if it is locally isometric to a pseudo hyperbolic space H nν (1) or to a pseudo sphere S nν (1).\",\"PeriodicalId\":38708,\"journal\":{\"name\":\"SUT Journal of Mathematics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SUT Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55937/sut/1330344618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1330344618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

。本文研究了具有保形曲率张量的(†)-对sasaki流形。在这种情况下,我们考虑了共形平坦、拟共形平坦和拟共形半对称(†)-para Sasakian流形。证明了(†)-para Sasakian流形mn (n > 3)是共形平坦的当且仅当它局部等距于伪双曲空间H nν(1)或伪球面S nν(1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On conformal curvature tensor of (ϵ)-para Sasakian manifolds
. In this article, we study ( † )-para Sasakian manifolds with conformal curvature tensor. In this context, we consider conformally flat, quasi-conformally flat and quasi-conformally semi-symmetric ( † )-para Sasakian manifolds. It is proved that ( † )-para Sasakian manifold M n ( n > 3) is conformally flat if and only if it is locally isometric to a pseudo hyperbolic space H nν (1) or to a pseudo sphere S nν (1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SUT Journal of Mathematics
SUT Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信