拟线性二阶抛物型偏微分方程Cauchy问题解的正则性

IF 0.3 Q4 MATHEMATICS
M. Yaremenko
{"title":"拟线性二阶抛物型偏微分方程Cauchy问题解的正则性","authors":"M. Yaremenko","doi":"10.3844/jmssp.2020.76.89","DOIUrl":null,"url":null,"abstract":"This article is dedicated to expanding our comprehension of the regularity of the solutions to the Cauchy problem for the quasilinear second-order parabolic partial differential equations under fair general conditions on the nonlinear perturbations. In this paper have been obtained that the sequence of the weak solutions uz ∈ V1,02, z = 1,2,..... to the Cauchy problems for the Equations (15) under the initial conditions uz (0,x) = φ0z converges to the weak solution to the Cauchy problem for the Equation (1) under the initial condition u(0, x) = u0 in V1,02.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"27 1","pages":"76-89"},"PeriodicalIF":0.3000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Regularity of the Solutions to the Cauchy Problem for the Quasilinear Second-Order Parabolic Partial Differential Equations\",\"authors\":\"M. Yaremenko\",\"doi\":\"10.3844/jmssp.2020.76.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is dedicated to expanding our comprehension of the regularity of the solutions to the Cauchy problem for the quasilinear second-order parabolic partial differential equations under fair general conditions on the nonlinear perturbations. In this paper have been obtained that the sequence of the weak solutions uz ∈ V1,02, z = 1,2,..... to the Cauchy problems for the Equations (15) under the initial conditions uz (0,x) = φ0z converges to the weak solution to the Cauchy problem for the Equation (1) under the initial condition u(0, x) = u0 in V1,02.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"27 1\",\"pages\":\"76-89\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jmssp.2020.76.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2020.76.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文扩展了我们对拟线性二阶抛物型偏微分方程在一般非线性扰动条件下Cauchy问题解的正则性的理解。本文得到了弱解uz∈V1,02, z = 1,2,.....的序列方程(15)在初始条件uz (0,x) = φ0z下的柯西问题收敛于方程(1)在初始条件u(0, x) = u0下的柯西问题的弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Regularity of the Solutions to the Cauchy Problem for the Quasilinear Second-Order Parabolic Partial Differential Equations
This article is dedicated to expanding our comprehension of the regularity of the solutions to the Cauchy problem for the quasilinear second-order parabolic partial differential equations under fair general conditions on the nonlinear perturbations. In this paper have been obtained that the sequence of the weak solutions uz ∈ V1,02, z = 1,2,..... to the Cauchy problems for the Equations (15) under the initial conditions uz (0,x) = φ0z converges to the weak solution to the Cauchy problem for the Equation (1) under the initial condition u(0, x) = u0 in V1,02.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信