挪威北极斯匹次卑尔根岛始新世深水砂转移

IF 2.6 2区 地球科学 Q1 GEOLOGY
Sedimentology Pub Date : 2023-05-11 DOI:10.1111/sed.13105
S. Grundvåg, W. Helland‐Hansen, E. Johannessen, J. Eggenhuisen, F. Pohl, Yvonne T. Spychala
{"title":"挪威北极斯匹次卑尔根岛始新世深水砂转移","authors":"S. Grundvåg, W. Helland‐Hansen, E. Johannessen, J. Eggenhuisen, F. Pohl, Yvonne T. Spychala","doi":"10.1111/sed.13105","DOIUrl":null,"url":null,"abstract":"Flood‐generated hyperpycnal flows are dense, sediment‐laden, turbulent flows that can form long‐lived, bottom‐hugging turbidity currents, which undoubtedly transport large volumes of fine‐grained sediments into the ocean. However, their ability in transferring sand into deep‐water basins is debated. This study presents sedimentological evidence of sandy hyperpycnal flow deposits (hyperpycnites) in a series of basin floor lobe complexes associated with a progradational shelf margin in the Eocene of Spitsbergen, Arctic Norway. Four coexisting types of sediment gravity flow deposits are recognized: (i) sandy hyperpycnites deposited by quasi‐steady hyperpycnal flows; (ii) turbidites deposited by waning, surge‐type turbidity currents; (iii) hybrid event beds deposited by transitional flows; and (iv) mass transport deposits emplaced during rare slope failures. The abundance of thick‐bedded massive sandstones, frequent bed amalgamation, the distribution of hyperpycnites across the lobes and the abundance and systematic occurrence of plant‐rich hybrid event beds and associated climbing ripple cross‐laminated beds in the lobe fringes, suggest that hyperpycnal flow was the most important mechanism driving lobe progradation. Shelf‐edge positioned fluvial channels linked to the basin floor lobe complexes via deeply incised, sandstone‐filled slope channels, suggest that rivers fed directly onto the slopes where their dense, sand‐laden discharges readily generated quasi‐steady hyperpycnal flows that regularly reached the basin floor. The composite architecture and complex waxing–waning flow facies configuration of the hyperpycnites is consistent with sustained and concomitant suspension and traction deposition under fluctuating subcritical to supercritical conditions. Similar sandstone beds occur on the clinoform slopes, indicating that the hyperpycnal flows operated likewise on the slope. Plant‐rich hybrid event beds indicate transformation of initially turbulent flows by relative enrichment of clay and plant material via progressive sand deposition to such an extent that it suppressed turbulence. The multi‐faceted character of the hyperpycnites reported here, challenges traditional beliefs that hyperpycnites assumingly preserve the waxing–waning signal of single‐peaked floods.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep‐water sand transfer by hyperpycnal flows, the Eocene of Spitsbergen, Arctic Norway\",\"authors\":\"S. Grundvåg, W. Helland‐Hansen, E. Johannessen, J. Eggenhuisen, F. Pohl, Yvonne T. Spychala\",\"doi\":\"10.1111/sed.13105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flood‐generated hyperpycnal flows are dense, sediment‐laden, turbulent flows that can form long‐lived, bottom‐hugging turbidity currents, which undoubtedly transport large volumes of fine‐grained sediments into the ocean. However, their ability in transferring sand into deep‐water basins is debated. This study presents sedimentological evidence of sandy hyperpycnal flow deposits (hyperpycnites) in a series of basin floor lobe complexes associated with a progradational shelf margin in the Eocene of Spitsbergen, Arctic Norway. Four coexisting types of sediment gravity flow deposits are recognized: (i) sandy hyperpycnites deposited by quasi‐steady hyperpycnal flows; (ii) turbidites deposited by waning, surge‐type turbidity currents; (iii) hybrid event beds deposited by transitional flows; and (iv) mass transport deposits emplaced during rare slope failures. The abundance of thick‐bedded massive sandstones, frequent bed amalgamation, the distribution of hyperpycnites across the lobes and the abundance and systematic occurrence of plant‐rich hybrid event beds and associated climbing ripple cross‐laminated beds in the lobe fringes, suggest that hyperpycnal flow was the most important mechanism driving lobe progradation. Shelf‐edge positioned fluvial channels linked to the basin floor lobe complexes via deeply incised, sandstone‐filled slope channels, suggest that rivers fed directly onto the slopes where their dense, sand‐laden discharges readily generated quasi‐steady hyperpycnal flows that regularly reached the basin floor. The composite architecture and complex waxing–waning flow facies configuration of the hyperpycnites is consistent with sustained and concomitant suspension and traction deposition under fluctuating subcritical to supercritical conditions. Similar sandstone beds occur on the clinoform slopes, indicating that the hyperpycnal flows operated likewise on the slope. Plant‐rich hybrid event beds indicate transformation of initially turbulent flows by relative enrichment of clay and plant material via progressive sand deposition to such an extent that it suppressed turbulence. The multi‐faceted character of the hyperpycnites reported here, challenges traditional beliefs that hyperpycnites assumingly preserve the waxing–waning signal of single‐peaked floods.\",\"PeriodicalId\":21838,\"journal\":{\"name\":\"Sedimentology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sedimentology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/sed.13105\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sedimentology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/sed.13105","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep‐water sand transfer by hyperpycnal flows, the Eocene of Spitsbergen, Arctic Norway
Flood‐generated hyperpycnal flows are dense, sediment‐laden, turbulent flows that can form long‐lived, bottom‐hugging turbidity currents, which undoubtedly transport large volumes of fine‐grained sediments into the ocean. However, their ability in transferring sand into deep‐water basins is debated. This study presents sedimentological evidence of sandy hyperpycnal flow deposits (hyperpycnites) in a series of basin floor lobe complexes associated with a progradational shelf margin in the Eocene of Spitsbergen, Arctic Norway. Four coexisting types of sediment gravity flow deposits are recognized: (i) sandy hyperpycnites deposited by quasi‐steady hyperpycnal flows; (ii) turbidites deposited by waning, surge‐type turbidity currents; (iii) hybrid event beds deposited by transitional flows; and (iv) mass transport deposits emplaced during rare slope failures. The abundance of thick‐bedded massive sandstones, frequent bed amalgamation, the distribution of hyperpycnites across the lobes and the abundance and systematic occurrence of plant‐rich hybrid event beds and associated climbing ripple cross‐laminated beds in the lobe fringes, suggest that hyperpycnal flow was the most important mechanism driving lobe progradation. Shelf‐edge positioned fluvial channels linked to the basin floor lobe complexes via deeply incised, sandstone‐filled slope channels, suggest that rivers fed directly onto the slopes where their dense, sand‐laden discharges readily generated quasi‐steady hyperpycnal flows that regularly reached the basin floor. The composite architecture and complex waxing–waning flow facies configuration of the hyperpycnites is consistent with sustained and concomitant suspension and traction deposition under fluctuating subcritical to supercritical conditions. Similar sandstone beds occur on the clinoform slopes, indicating that the hyperpycnal flows operated likewise on the slope. Plant‐rich hybrid event beds indicate transformation of initially turbulent flows by relative enrichment of clay and plant material via progressive sand deposition to such an extent that it suppressed turbulence. The multi‐faceted character of the hyperpycnites reported here, challenges traditional beliefs that hyperpycnites assumingly preserve the waxing–waning signal of single‐peaked floods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sedimentology
Sedimentology 地学-地质学
CiteScore
8.20
自引率
11.40%
发文量
94
审稿时长
6-12 weeks
期刊介绍: The international leader in its field, Sedimentology publishes ground-breaking research from across the spectrum of sedimentology, sedimentary geology and sedimentary geochemistry. Areas covered include: experimental and theoretical grain transport; sediment fluxes; modern and ancient sedimentary environments; sequence stratigraphy sediment-organism interaction; palaeosoils; diagenesis; stable isotope geochemistry; environmental sedimentology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信