{"title":"可供选择:基于图形的密钥管理协议评估,以共享加密数据","authors":"H. Kühner, H. Hartenstein","doi":"10.1145/2557547.2557583","DOIUrl":null,"url":null,"abstract":"Sharing data with client-side encryption requires key management. Selecting an appropriate key management protocol for a given scenario is hard, since the interdependency between scenario parameters and the resource consumption of a protocol is often only known for artificial, simplified scenarios. In this paper, we explore the resource consumption of systems that offer sharing of encrypted data within real-world scenarios, which are typically complex and determined by many parameters. For this purpose, we first collect empirical data that represents real-world scenarios by monitoring large-scale services within our organization. We then use this data to parameterize a resource consumption model that is based on the key graph generated by each key management protocol. The preliminary simulation runs we did so far indicate that this key-graph based model can be used to estimate the resource consumption of real-world systems for sharing encrypted data.","PeriodicalId":90472,"journal":{"name":"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy","volume":"98 1","pages":"147-150"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spoilt for choice: graph-based assessment of key management protocols to share encrypted data\",\"authors\":\"H. Kühner, H. Hartenstein\",\"doi\":\"10.1145/2557547.2557583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sharing data with client-side encryption requires key management. Selecting an appropriate key management protocol for a given scenario is hard, since the interdependency between scenario parameters and the resource consumption of a protocol is often only known for artificial, simplified scenarios. In this paper, we explore the resource consumption of systems that offer sharing of encrypted data within real-world scenarios, which are typically complex and determined by many parameters. For this purpose, we first collect empirical data that represents real-world scenarios by monitoring large-scale services within our organization. We then use this data to parameterize a resource consumption model that is based on the key graph generated by each key management protocol. The preliminary simulation runs we did so far indicate that this key-graph based model can be used to estimate the resource consumption of real-world systems for sharing encrypted data.\",\"PeriodicalId\":90472,\"journal\":{\"name\":\"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy\",\"volume\":\"98 1\",\"pages\":\"147-150\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2557547.2557583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2557547.2557583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spoilt for choice: graph-based assessment of key management protocols to share encrypted data
Sharing data with client-side encryption requires key management. Selecting an appropriate key management protocol for a given scenario is hard, since the interdependency between scenario parameters and the resource consumption of a protocol is often only known for artificial, simplified scenarios. In this paper, we explore the resource consumption of systems that offer sharing of encrypted data within real-world scenarios, which are typically complex and determined by many parameters. For this purpose, we first collect empirical data that represents real-world scenarios by monitoring large-scale services within our organization. We then use this data to parameterize a resource consumption model that is based on the key graph generated by each key management protocol. The preliminary simulation runs we did so far indicate that this key-graph based model can be used to estimate the resource consumption of real-world systems for sharing encrypted data.