注意机制利用时间背景:实时三维人体姿态重建

Ruixu Liu, Ju Shen, He Wang, Chen Chen, S. Cheung, V. Asari
{"title":"注意机制利用时间背景:实时三维人体姿态重建","authors":"Ruixu Liu, Ju Shen, He Wang, Chen Chen, S. Cheung, V. Asari","doi":"10.1109/cvpr42600.2020.00511","DOIUrl":null,"url":null,"abstract":"We propose a novel attention-based framework for 3D human pose estimation from a monocular video. Despite the general success of end-to-end deep learning paradigms, our approach is based on two key observations: (1) temporal incoherence and jitter are often yielded from a single frame prediction; (2) error rate can be remarkably reduced by increasing the receptive field in a video. Therefore, we design an attentional mechanism to adaptively identify significant frames and tensor outputs from each deep neural net layer, leading to a more optimal estimation. To achieve large temporal receptive fields, multi-scale dilated convolutions are employed to model long-range dependencies among frames. The architecture is straightforward to implement and can be flexibly adopted for real-time applications. Any off-the-shelf 2D pose estimation system, e.g. Mocap libraries, can be easily integrated in an ad-hoc fashion. We both quantitatively and qualitatively evaluate our method on various standard benchmark datasets (e.g. Human3.6M, HumanEva). Our method considerably outperforms all the state-of-the-art algorithms up to 8% error reduction (average mean per joint position error: 34.7) as compared to the best-reported results. Code is available at: (https://github.com/lrxjason/Attention3DHumanPose)","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"23 1","pages":"5063-5072"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":"{\"title\":\"Attention Mechanism Exploits Temporal Contexts: Real-Time 3D Human Pose Reconstruction\",\"authors\":\"Ruixu Liu, Ju Shen, He Wang, Chen Chen, S. Cheung, V. Asari\",\"doi\":\"10.1109/cvpr42600.2020.00511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel attention-based framework for 3D human pose estimation from a monocular video. Despite the general success of end-to-end deep learning paradigms, our approach is based on two key observations: (1) temporal incoherence and jitter are often yielded from a single frame prediction; (2) error rate can be remarkably reduced by increasing the receptive field in a video. Therefore, we design an attentional mechanism to adaptively identify significant frames and tensor outputs from each deep neural net layer, leading to a more optimal estimation. To achieve large temporal receptive fields, multi-scale dilated convolutions are employed to model long-range dependencies among frames. The architecture is straightforward to implement and can be flexibly adopted for real-time applications. Any off-the-shelf 2D pose estimation system, e.g. Mocap libraries, can be easily integrated in an ad-hoc fashion. We both quantitatively and qualitatively evaluate our method on various standard benchmark datasets (e.g. Human3.6M, HumanEva). Our method considerably outperforms all the state-of-the-art algorithms up to 8% error reduction (average mean per joint position error: 34.7) as compared to the best-reported results. Code is available at: (https://github.com/lrxjason/Attention3DHumanPose)\",\"PeriodicalId\":6715,\"journal\":{\"name\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"23 1\",\"pages\":\"5063-5072\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"112\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvpr42600.2020.00511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

摘要

我们提出了一种新的基于注意力的单目视频三维人体姿态估计框架。尽管端到端深度学习范式总体上取得了成功,但我们的方法基于两个关键观察:(1)单帧预测通常会产生时间不相干和抖动;(2)增加视频的接受野可以显著降低错误率。因此,我们设计了一种注意力机制来自适应地识别每个深度神经网络层的重要帧和张量输出,从而实现更优化的估计。为了获得大的时间接受域,采用多尺度扩展卷积来模拟帧间的远程依赖关系。该体系结构易于实现,可以灵活地用于实时应用。任何现成的2D姿态估计系统,例如动作捕捉库,都可以轻松地以特别的方式集成。我们在各种标准基准数据集(例如Human3.6M, HumanEva)上对我们的方法进行了定量和定性评估。与最好的报告结果相比,我们的方法大大优于所有最先进的算法,误差减少了8%(平均每个关节位置误差:34.7)。代码可从以下网址获得:(https://github.com/lrxjason/Attention3DHumanPose)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention Mechanism Exploits Temporal Contexts: Real-Time 3D Human Pose Reconstruction
We propose a novel attention-based framework for 3D human pose estimation from a monocular video. Despite the general success of end-to-end deep learning paradigms, our approach is based on two key observations: (1) temporal incoherence and jitter are often yielded from a single frame prediction; (2) error rate can be remarkably reduced by increasing the receptive field in a video. Therefore, we design an attentional mechanism to adaptively identify significant frames and tensor outputs from each deep neural net layer, leading to a more optimal estimation. To achieve large temporal receptive fields, multi-scale dilated convolutions are employed to model long-range dependencies among frames. The architecture is straightforward to implement and can be flexibly adopted for real-time applications. Any off-the-shelf 2D pose estimation system, e.g. Mocap libraries, can be easily integrated in an ad-hoc fashion. We both quantitatively and qualitatively evaluate our method on various standard benchmark datasets (e.g. Human3.6M, HumanEva). Our method considerably outperforms all the state-of-the-art algorithms up to 8% error reduction (average mean per joint position error: 34.7) as compared to the best-reported results. Code is available at: (https://github.com/lrxjason/Attention3DHumanPose)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信