Hydra I:一个可扩展的多源查找器比较和编目工具

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
M. Boyce, A. Hopkins, S. Riggi, L. Rudnick, M. Ramsay, C. Hale, J. Marvil, M. Whiting, P. Venkataraman, C. O’Dea, S. Baum, Y. Gordon, A. Vantyghem, M. Dionyssiou, H. Andernach, J. Collier, J. English, B. Koribalski, D. Leahy, M. Michałowski, S. Safi-Harb, M. Vaccari, Elaine L. Alexander, M. Cowley, A. Kapinska, A. Robotham, H. Tang
{"title":"Hydra I:一个可扩展的多源查找器比较和编目工具","authors":"M. Boyce, A. Hopkins, S. Riggi, L. Rudnick, M. Ramsay, C. Hale, J. Marvil, M. Whiting, P. Venkataraman, C. O’Dea, S. Baum, Y. Gordon, A. Vantyghem, M. Dionyssiou, H. Andernach, J. Collier, J. English, B. Koribalski, D. Leahy, M. Michałowski, S. Safi-Harb, M. Vaccari, Elaine L. Alexander, M. Cowley, A. Kapinska, A. Robotham, H. Tang","doi":"10.1017/pasa.2023.24","DOIUrl":null,"url":null,"abstract":"Abstract The latest generation of radio surveys are now producing sky survey images containing many millions of radio sources. In this context it is highly desirable to understand the performance of radio image source finder (SF) software and to identify an approach that optimises source detection capabilities. We have created Hydra to be an extensible multi-SF and cataloguing tool that can be used to compare and evaluate different SFs. Hydra, which currently includes the SFs Aegean, Caesar, ProFound, PyBDSF, and Selavy, provides for the addition of new SFs through containerisation and configuration files. The SF input RMS noise and island parameters are optimised to a 90% ‘percentage real detections’ threshold (calculated from the difference between detections in the real and inverted images), to enable comparison between SFs. Hydra provides completeness and reliability diagnostics through observed-deep ( \n$\\mathcal{D}$\n ) and generated-shallow ( \n$\\mathcal{S}$\n ) images, as well as other statistics. In addition, it has a visual inspection tool for comparing residual images through various selection filters, such as S/N bins in completeness or reliability. The tool allows the user to easily compare and evaluate different SFs in order to choose their desired SF, or a combination thereof. This paper is part one of a two part series. In this paper we introduce the Hydra software suite and validate its \n$\\mathcal{D/S}$\n metrics using simulated data. The companion paper demonstrates the utility of Hydra by comparing the performance of SFs using both simulated and real images.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydra I: An extensible multi-source-finder comparison and cataloguing tool\",\"authors\":\"M. Boyce, A. Hopkins, S. Riggi, L. Rudnick, M. Ramsay, C. Hale, J. Marvil, M. Whiting, P. Venkataraman, C. O’Dea, S. Baum, Y. Gordon, A. Vantyghem, M. Dionyssiou, H. Andernach, J. Collier, J. English, B. Koribalski, D. Leahy, M. Michałowski, S. Safi-Harb, M. Vaccari, Elaine L. Alexander, M. Cowley, A. Kapinska, A. Robotham, H. Tang\",\"doi\":\"10.1017/pasa.2023.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The latest generation of radio surveys are now producing sky survey images containing many millions of radio sources. In this context it is highly desirable to understand the performance of radio image source finder (SF) software and to identify an approach that optimises source detection capabilities. We have created Hydra to be an extensible multi-SF and cataloguing tool that can be used to compare and evaluate different SFs. Hydra, which currently includes the SFs Aegean, Caesar, ProFound, PyBDSF, and Selavy, provides for the addition of new SFs through containerisation and configuration files. The SF input RMS noise and island parameters are optimised to a 90% ‘percentage real detections’ threshold (calculated from the difference between detections in the real and inverted images), to enable comparison between SFs. Hydra provides completeness and reliability diagnostics through observed-deep ( \\n$\\\\mathcal{D}$\\n ) and generated-shallow ( \\n$\\\\mathcal{S}$\\n ) images, as well as other statistics. In addition, it has a visual inspection tool for comparing residual images through various selection filters, such as S/N bins in completeness or reliability. The tool allows the user to easily compare and evaluate different SFs in order to choose their desired SF, or a combination thereof. This paper is part one of a two part series. In this paper we introduce the Hydra software suite and validate its \\n$\\\\mathcal{D/S}$\\n metrics using simulated data. The companion paper demonstrates the utility of Hydra by comparing the performance of SFs using both simulated and real images.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/pasa.2023.24\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2023.24","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

最新一代的射电巡天正在产生包含数百万射电源的巡天图像。在这种情况下,非常需要了解无线电图像源查找器(SF)软件的性能,并确定优化源检测能力的方法。我们已经创建了Hydra作为一个可扩展的多sf和编目工具,可以用来比较和评估不同的sf。Hydra目前包括egean、Caesar、ProFound、PyBDSF和Selavy系列sf,它通过容器化和配置文件提供了添加新sf的功能。SF输入的RMS噪声和岛参数被优化到90%的“真实检测百分比”阈值(根据真实图像和倒排图像的检测差异计算),以实现SF之间的比较。Hydra通过观察到的深度($\mathcal{D}$)和生成的浅($\mathcal{S}$)图像以及其他统计数据提供完整性和可靠性诊断。此外,它有一个视觉检测工具,通过各种选择过滤器,如在完整性或可靠性的S/N箱来比较残差图像。该工具允许用户轻松地比较和评估不同的SF,以便选择他们想要的SF,或它们的组合。本文是由两部分组成的系列文章的第一部分。本文介绍了Hydra软件套件,并使用模拟数据验证了其$\mathcal{D/S}$指标。配套的论文通过比较sf使用模拟和真实图像的性能来演示Hydra的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydra I: An extensible multi-source-finder comparison and cataloguing tool
Abstract The latest generation of radio surveys are now producing sky survey images containing many millions of radio sources. In this context it is highly desirable to understand the performance of radio image source finder (SF) software and to identify an approach that optimises source detection capabilities. We have created Hydra to be an extensible multi-SF and cataloguing tool that can be used to compare and evaluate different SFs. Hydra, which currently includes the SFs Aegean, Caesar, ProFound, PyBDSF, and Selavy, provides for the addition of new SFs through containerisation and configuration files. The SF input RMS noise and island parameters are optimised to a 90% ‘percentage real detections’ threshold (calculated from the difference between detections in the real and inverted images), to enable comparison between SFs. Hydra provides completeness and reliability diagnostics through observed-deep ( $\mathcal{D}$ ) and generated-shallow ( $\mathcal{S}$ ) images, as well as other statistics. In addition, it has a visual inspection tool for comparing residual images through various selection filters, such as S/N bins in completeness or reliability. The tool allows the user to easily compare and evaluate different SFs in order to choose their desired SF, or a combination thereof. This paper is part one of a two part series. In this paper we introduce the Hydra software suite and validate its $\mathcal{D/S}$ metrics using simulated data. The companion paper demonstrates the utility of Hydra by comparing the performance of SFs using both simulated and real images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信