{"title":"界面张力变化对水-油乳液失稳的影响","authors":"A. Sulaimon, B. Adeyemi","doi":"10.5772/INTECHOPEN.74769","DOIUrl":null,"url":null,"abstract":"Resolution of water-in-oil emulsion is a major crude oil processing requirement in oil industry. To improve the quality of the oil and fulfill regulatory requirements numer ous chemical demulsifiers of varying efficiencies and effectiveness have been developed over the years. In this study, we have investigated the effects of water content, tempera ture, and different concentrations of Sodium Methyl Ester Sulfonate ( SMES ) on emulsion viscosity profiles and stability under distinct levels of salinities. The water content was measured with the American Standard Testing Method ASTM D4928 while SARA analysis was conducted using the ASTM D3279 and ASTM D6591 methods. The den - sity and viscosity of the samples were measured following the ASTM D5002 and ASTM D445 techniques respectively while the emulsion stability was evaluated based on the rate of sedimentation, flocculation and coalescence from Turbiscan classic MA 2000. Refractometer with the aid of a light-emitting diode, a sapphire prism and a high-reso - lution optical sensor was used to measure the refractive index while interfacial tension was measured with spinning drop tensiometer. The emulsion samples were investigated at 25, 50 and 75°C. Analyses show that the interactions of the constituents of a crude oil system, the produced water system and the emulsion system play major roles in the characterization of water-in-crude oil emulsions. Hence, the stability of water-in-crude oil emulsions is related to the viscous force presented by the continuous phase, water cut and salinity.","PeriodicalId":21423,"journal":{"name":"Science and Technology Behind Nanoemulsions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Effects of Interfacial Tension Alteration on the Destabilization of Water-Oil Emulsions\",\"authors\":\"A. Sulaimon, B. Adeyemi\",\"doi\":\"10.5772/INTECHOPEN.74769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resolution of water-in-oil emulsion is a major crude oil processing requirement in oil industry. To improve the quality of the oil and fulfill regulatory requirements numer ous chemical demulsifiers of varying efficiencies and effectiveness have been developed over the years. In this study, we have investigated the effects of water content, tempera ture, and different concentrations of Sodium Methyl Ester Sulfonate ( SMES ) on emulsion viscosity profiles and stability under distinct levels of salinities. The water content was measured with the American Standard Testing Method ASTM D4928 while SARA analysis was conducted using the ASTM D3279 and ASTM D6591 methods. The den - sity and viscosity of the samples were measured following the ASTM D5002 and ASTM D445 techniques respectively while the emulsion stability was evaluated based on the rate of sedimentation, flocculation and coalescence from Turbiscan classic MA 2000. Refractometer with the aid of a light-emitting diode, a sapphire prism and a high-reso - lution optical sensor was used to measure the refractive index while interfacial tension was measured with spinning drop tensiometer. The emulsion samples were investigated at 25, 50 and 75°C. Analyses show that the interactions of the constituents of a crude oil system, the produced water system and the emulsion system play major roles in the characterization of water-in-crude oil emulsions. Hence, the stability of water-in-crude oil emulsions is related to the viscous force presented by the continuous phase, water cut and salinity.\",\"PeriodicalId\":21423,\"journal\":{\"name\":\"Science and Technology Behind Nanoemulsions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology Behind Nanoemulsions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.74769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology Behind Nanoemulsions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.74769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Interfacial Tension Alteration on the Destabilization of Water-Oil Emulsions
Resolution of water-in-oil emulsion is a major crude oil processing requirement in oil industry. To improve the quality of the oil and fulfill regulatory requirements numer ous chemical demulsifiers of varying efficiencies and effectiveness have been developed over the years. In this study, we have investigated the effects of water content, tempera ture, and different concentrations of Sodium Methyl Ester Sulfonate ( SMES ) on emulsion viscosity profiles and stability under distinct levels of salinities. The water content was measured with the American Standard Testing Method ASTM D4928 while SARA analysis was conducted using the ASTM D3279 and ASTM D6591 methods. The den - sity and viscosity of the samples were measured following the ASTM D5002 and ASTM D445 techniques respectively while the emulsion stability was evaluated based on the rate of sedimentation, flocculation and coalescence from Turbiscan classic MA 2000. Refractometer with the aid of a light-emitting diode, a sapphire prism and a high-reso - lution optical sensor was used to measure the refractive index while interfacial tension was measured with spinning drop tensiometer. The emulsion samples were investigated at 25, 50 and 75°C. Analyses show that the interactions of the constituents of a crude oil system, the produced water system and the emulsion system play major roles in the characterization of water-in-crude oil emulsions. Hence, the stability of water-in-crude oil emulsions is related to the viscous force presented by the continuous phase, water cut and salinity.