伴随ITS计算使用CEPXS电子-光子截面

L. Lorence, R. Kensek, J. Halbleib
{"title":"伴随ITS计算使用CEPXS电子-光子截面","authors":"L. Lorence, R. Kensek, J. Halbleib","doi":"10.2172/90095","DOIUrl":null,"url":null,"abstract":"Continuous-energy Monte Carlo Codes are not generally suited for adjoint coupled electron-photon transport. Line radiation (e.g., fluorescence) is especially difficult to implement in adjoint mode with continuous-energy codes. The only published work on adjoint electron Monte Carlo transport is Jordan. The adjoint capability of his NOVICE code is expedited by a multigroup approximation. More recently, a Boltzmann-Fokker-Planck (BFP) Monte Carlo technique has been developed for adjoint electron transport. As in NOVICE, particle transport with BFP Monte Carlo is neither entirely continuous energy nor entirely multigroup. The BFP method has been tested in the multigroup version of MCNP and is being integrated into the ITS code package. Multigroup data produced by the CEPXS cross-section-generating code is needed to operate the BFP codes in adjoint electron-photon mode. In this paper, we present adjoint electron-photon transport results obtained with a new version of CEPXS and a new multigroup version of ITS.","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"45 16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1995-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adjoint ITS calculations using the CEPXS electron-photon cross sections\",\"authors\":\"L. Lorence, R. Kensek, J. Halbleib\",\"doi\":\"10.2172/90095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous-energy Monte Carlo Codes are not generally suited for adjoint coupled electron-photon transport. Line radiation (e.g., fluorescence) is especially difficult to implement in adjoint mode with continuous-energy codes. The only published work on adjoint electron Monte Carlo transport is Jordan. The adjoint capability of his NOVICE code is expedited by a multigroup approximation. More recently, a Boltzmann-Fokker-Planck (BFP) Monte Carlo technique has been developed for adjoint electron transport. As in NOVICE, particle transport with BFP Monte Carlo is neither entirely continuous energy nor entirely multigroup. The BFP method has been tested in the multigroup version of MCNP and is being integrated into the ITS code package. Multigroup data produced by the CEPXS cross-section-generating code is needed to operate the BFP codes in adjoint electron-photon mode. In this paper, we present adjoint electron-photon transport results obtained with a new version of CEPXS and a new multigroup version of ITS.\",\"PeriodicalId\":23138,\"journal\":{\"name\":\"Transactions of the American Nuclear Society\",\"volume\":\"45 16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Nuclear Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2172/90095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Nuclear Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/90095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

连续能量蒙特卡罗码一般不适用于伴随耦合电子-光子输运。线辐射(例如,荧光)在连续能量码的伴随模式下尤其难以实现。关于伴随电子蒙特卡洛输运的唯一出版的著作是Jordan。通过多群逼近,提高了新代码的伴随能力。最近,一种玻尔兹曼-福克-普朗克(BFP)蒙特卡罗技术被用于伴随电子输运。在《新手》中,BFP蒙特卡罗粒子输运既不是完全连续的能量,也不是完全多群的。BFP方法已在MCNP的多组版本中进行了测试,并正在集成到ITS代码包中。在伴随电子-光子模式下操作BFP代码需要CEPXS横截面生成代码产生的多组数据。本文给出了用新版CEPXS和新版多群ITS获得的伴随电子-光子输运结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjoint ITS calculations using the CEPXS electron-photon cross sections
Continuous-energy Monte Carlo Codes are not generally suited for adjoint coupled electron-photon transport. Line radiation (e.g., fluorescence) is especially difficult to implement in adjoint mode with continuous-energy codes. The only published work on adjoint electron Monte Carlo transport is Jordan. The adjoint capability of his NOVICE code is expedited by a multigroup approximation. More recently, a Boltzmann-Fokker-Planck (BFP) Monte Carlo technique has been developed for adjoint electron transport. As in NOVICE, particle transport with BFP Monte Carlo is neither entirely continuous energy nor entirely multigroup. The BFP method has been tested in the multigroup version of MCNP and is being integrated into the ITS code package. Multigroup data produced by the CEPXS cross-section-generating code is needed to operate the BFP codes in adjoint electron-photon mode. In this paper, we present adjoint electron-photon transport results obtained with a new version of CEPXS and a new multigroup version of ITS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信