M. Maden, Ali Murat Dulgeroglu, T. Bacaksız, C. Kazımoğlu
{"title":"在改良张力带接线治疗横向髌骨骨折时,针的配置是否重要?生物力学研究。","authors":"M. Maden, Ali Murat Dulgeroglu, T. Bacaksız, C. Kazımoğlu","doi":"10.2139/ssrn.4050221","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nModified tension band wiring has been widely used for the treatment of transverse patellar fractures. The optimal position of a Kirschner wire (K-wire) in modified tension band wiring, however, has not yet been determined. The purpose of the present study was to evaluate biomechanically the effect of K-wire position in a modified tension band wiring technique.\n\n\nMETHODS\nForty-two polyurethane foam patellae with a midway transverse fracture were assigned to six different fixation groups regarding different pin configurations in tension band wiring. The depth or sagittal position of the K-wire was divided into anterior and posterior. The coronal position of the K-wire was divided into central, medial and lateral. A specially designed set up simulated a knee with 60° flexion. All specimens were tested under axial traction. Loads at 2 mm and 4 mm fracture displacement and at the failure of the construct were recorded.\n\n\nRESULTS\nAt 2 mm fracture displacement, anterolateral (AL) placement of K-wires revealed significantly less durability when compared with five other groups (P < 0.001). At 4 mm fracture displacement, the AL group also revealed inferior biomechanical strength when compared with other groups. Posteromedial (PM) K-wire placement group revealed more durability when compared with the posterolateral (PL) group (P < 0.05). At failure of the osteosynthesis, anteromedial (AM) and anterocentral (AC) groups revealed superior biomechanical strengths (P < 0.05).\n\n\nCONCLUSIONS\nThe coronal and sagittal position of K-wire affects the biomechanical characteristics of modified tension band wiring. Anterolateral placement of K-wires revealed inferior strength to all other constructs in modified anterior tension band wiring.","PeriodicalId":22205,"journal":{"name":"The American journal of knee surgery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Does pin configuration matter in modified tension band wiring for transverse patellar fracture? A biomechanical study.\",\"authors\":\"M. Maden, Ali Murat Dulgeroglu, T. Bacaksız, C. Kazımoğlu\",\"doi\":\"10.2139/ssrn.4050221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nModified tension band wiring has been widely used for the treatment of transverse patellar fractures. The optimal position of a Kirschner wire (K-wire) in modified tension band wiring, however, has not yet been determined. The purpose of the present study was to evaluate biomechanically the effect of K-wire position in a modified tension band wiring technique.\\n\\n\\nMETHODS\\nForty-two polyurethane foam patellae with a midway transverse fracture were assigned to six different fixation groups regarding different pin configurations in tension band wiring. The depth or sagittal position of the K-wire was divided into anterior and posterior. The coronal position of the K-wire was divided into central, medial and lateral. A specially designed set up simulated a knee with 60° flexion. All specimens were tested under axial traction. Loads at 2 mm and 4 mm fracture displacement and at the failure of the construct were recorded.\\n\\n\\nRESULTS\\nAt 2 mm fracture displacement, anterolateral (AL) placement of K-wires revealed significantly less durability when compared with five other groups (P < 0.001). At 4 mm fracture displacement, the AL group also revealed inferior biomechanical strength when compared with other groups. Posteromedial (PM) K-wire placement group revealed more durability when compared with the posterolateral (PL) group (P < 0.05). At failure of the osteosynthesis, anteromedial (AM) and anterocentral (AC) groups revealed superior biomechanical strengths (P < 0.05).\\n\\n\\nCONCLUSIONS\\nThe coronal and sagittal position of K-wire affects the biomechanical characteristics of modified tension band wiring. Anterolateral placement of K-wires revealed inferior strength to all other constructs in modified anterior tension band wiring.\",\"PeriodicalId\":22205,\"journal\":{\"name\":\"The American journal of knee surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American journal of knee surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4050221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of knee surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4050221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Does pin configuration matter in modified tension band wiring for transverse patellar fracture? A biomechanical study.
BACKGROUND
Modified tension band wiring has been widely used for the treatment of transverse patellar fractures. The optimal position of a Kirschner wire (K-wire) in modified tension band wiring, however, has not yet been determined. The purpose of the present study was to evaluate biomechanically the effect of K-wire position in a modified tension band wiring technique.
METHODS
Forty-two polyurethane foam patellae with a midway transverse fracture were assigned to six different fixation groups regarding different pin configurations in tension band wiring. The depth or sagittal position of the K-wire was divided into anterior and posterior. The coronal position of the K-wire was divided into central, medial and lateral. A specially designed set up simulated a knee with 60° flexion. All specimens were tested under axial traction. Loads at 2 mm and 4 mm fracture displacement and at the failure of the construct were recorded.
RESULTS
At 2 mm fracture displacement, anterolateral (AL) placement of K-wires revealed significantly less durability when compared with five other groups (P < 0.001). At 4 mm fracture displacement, the AL group also revealed inferior biomechanical strength when compared with other groups. Posteromedial (PM) K-wire placement group revealed more durability when compared with the posterolateral (PL) group (P < 0.05). At failure of the osteosynthesis, anteromedial (AM) and anterocentral (AC) groups revealed superior biomechanical strengths (P < 0.05).
CONCLUSIONS
The coronal and sagittal position of K-wire affects the biomechanical characteristics of modified tension band wiring. Anterolateral placement of K-wires revealed inferior strength to all other constructs in modified anterior tension band wiring.